Neue Beobachtungen zum System TiO₂-Ta₂O₅†‡

WILHELM MERTIN §, REGINALD GRUEHN UND HARALD SCHÄFER

Anorganisch-Chemisches Institut der Universität Münster, Germany

Received August 30, 1969

Im System $TiO_2-Ta_2O_5$ beobachtet man bei hoher Temperatur (1400–1500°C) und mit steigendem O/Σ Me (mit $\Sigma Me = Ti + Ta$) eine Rutilmischphase, danach die Verbindung $TiTa_2O_7$ und schließlich die mit H-Ta₂O₅ verwandten Phasen H2 und H1. Die Rutilmischphase enthält z.B. nach Erhitzung an der Luft bei 1500°C 16–17 at.% Ta (Ti + Ta = 100%); unter diesen Bedingungen liegt ein Rutilgitter mit $O/\Sigma Me = 2.05$ vor. $TiTa_2O_7$ das mit $TiNb_2O_7$ wahrscheinlich isotyp ist, hat die Gitterkonstanten a = 11.847; b = 3.806; c = 20.39 Å; $\beta = 120.26^\circ$. In den Verbindungen $Ti_2Nb_{10}O_{29}$ und $TiNb_2A_{62}$ ist eine partielle Substitution von Nb durch Ta möglich. Die Phase H2 tritt im Bereich $2.467 \le O/\Sigma Me \le 2.484$ auf und besitzt die Gitterkonstanten (2.467 O/Me): a = 5.38; b = 5.35; c = 35.71 Å; $\beta = 91.66^\circ$. Die Phase H1 ($2.489-2.492 O/\Sigma Me$) hat die Gitterkonstanten a = 3.79; b = 3.81; c = 35.73 Å; $\beta = 90.79^\circ$. Für H-Ta₂O₅, das TiO₂ bis zur Zusammensetzung $2.494 O/\Sigma Me$ aufnehmen kann, ist a = 3.78; b = 3.80; c = 35.74 Å; $\alpha = 90.20^\circ$; $\beta = 90.96^\circ$; $\gamma = 89.97^\circ$.

In the TiO₂-Ta₂O₅-System at high temperatures and with increasing ratio $O/\Sigma Me$ ($\Sigma Me = Ti + Ta$) a solid solution of the rutile type, a compound TiTa₂O₇ and phases H2 and H1 related to H-Ta₂O₅ are observed. After heating in air at 1500°C, the rutile phase can accommodate up to 16-17 at.% Ta (Ti + Ta = 100%) at which composition the $O/\Sigma Me$ ratio has reached 2.05. The next higher phase which is probably isotypic to TiNb₂O₇ has the lattice constants a = 11.847; b = 3.806; c = 20.39 Å; $\beta = 120.26^{\circ}$. In both compounds Ti₂Nb₁₀O₂₉ and TiNb₂₄O₆₂ partial substitution of Nb with Ta was realized. The H2 phase occurs in the region 2.467 $\leq O/\Sigma Me \leq 2.484$ and has the lattice constants a = 5.38; b = 5.35; c = 35.71 Å; $\beta = 91.66^{\circ}$ (2.467 = $O/\Sigma Me$). The H1 phase (2.489-2.492 = $O/\Sigma Me$) has the lattice constants a = 3.79; b = 3.81; c = 35.73 Å; $\beta = 90.79^{\circ}$. The lattice constants of H-Ta₂O₅ were determined to be a = 3.78; b = 3.80; c = 35.74 Å; $\alpha = 90.20^{\circ}$; $\beta = 90.96^{\circ}$; $\gamma = 89.97^{\circ}$. TiO₂ can dissolve in H-Ta₂O₅ down to an oxygen/metal ratio of 2.494.

1. Einführung

Die bei den Systemen $MeO_2-Nb_2O_5$, $Me_2O_3-Nb_2O_5$, $MeO-Nb_2O_5$ sowie $Nb_2O_5-MeO_3$ und $Nb_2O_5-NbO_2F$ (1) auftretenden komplizierten Phasenverhältnisse und die damit zusammenhängenden Strukturprinzipien führten zu der Frage, ob mit Ta₂O₅ ähnliche Verhältnisse auftreten (2), (3).

Wie Wadsley und Andersson (4) zeigten, können nahezu alle Verbindungstypen Nb₂O₅-reicher Systeme, die im Bereich $2.33 \le X/\Sigma$ Me ≤ 2.65 (X = 0 oder X = O,F) beobachtet werden, als Varianten eines charakteristischen Bauprinzips (*MeO*₃-*Blöcke*; *shear planes*) angesehen werden. Diese

† Beiträge zur Chemie der Elemente Niob und Tantal LXXVII. 76. Mitteilung vgl. W. Mertin, S. Andersson und R. Gruehn, J. Solid State Chemistry, 1, 419 (1970).

§ Neue Anschrift: Department of Chemistry, University of Kansas, Lawrence, Kansas.

Verbindungen erfordern in der Regel hohe Darstellungstemperaturen (1), (5), (6). Die mit ihnen verwandte Niobpentoxidmodifikation H-Nb₂O₅ ist nur oberhalb ~ 700°C stabil (7).

Modifikationen des Tantalpentoxids mit analogen Blockstrukturen sind bisher nicht bekannt. Die Hochtemperaturmodifikation H-Ta₂O₅, die reversibel oberhalb von etwa 1360°C entsteht, schließt im Bauprinzip (8) an die wahrscheinlich metastabilen Niobpentoxidmodifikationen P-Nb₂O₅ (7), (9) und $R-Nb_2O_5(10)$ an. Als weitere Ta_2O_5 -Modifikationen waren bisher außer H-Ta₂O₅ und seinen metastabilen Varianten (8) nur noch das unterhalb von 1360°C stabile T–Ta₂O₅ und eine weniger geordnete Vorstufe "TT-Ta₂O₅" (11) zu beobachten. T-Ta₂O₅ ist mit $T-Nb_2O_5$, einer wahrscheinlich metastabilen Form des Niobpentoxids, nahe verwandt; beide sind weitgehend mischbar (11), (12). Darüber hinausgehend zeigt Ta₂O₅ keine weitere Analogie zum Formenreichtum des Niobpentoxids, der im

[‡] Diese Arbeit ist dem Gedächtnis unseres verstorbenen Kollegen Dr. A. D. Wadsley gewidmet.

Temperaturbereich bis etwa 900°C zu beobachten ist und weitere Modifikationen (*Formen*) mit Blockstrukturen $[N-Nb_2O_5 (13), M-Nb_2O_5 (14),$ und wahrscheinlich auch die Formen "ox I" bis "ox VI" (7)] einschließt.

Aus dem Aufbau [vgl. PNb₉O₂₅ (15)] der ternären Oxide PTa_9O_{25} , AsTa $_9O_{25}$, VTa $_9O_{25}$, und $2Nb_2O_5 \cdot Ta_2O_5$ (16) geht hervor, daß Ta_2O_5 -reiche Stoffe ein Bauprinzip mit MeO3-Blöcken ebenfalls realisieren können. Wie die analogen Verbindungstypen in Nb₂O₅-reichen Systemen entstehen diese Strukturen im allgemeinen erst bei sehr hoher Temperatur. Daher war für uns von besonderem Interesse, im Anschluß an die Untersuchung der Systeme NbO₂-Nb₂O₅ (17) und TiO₂-Nb₂O₅ (1), (18) die Verhältnisse im Gebiet TiO₂-Ta₂O₅ bei hoher Temperatur ebenfalls näher kennen zu lernen. Auf die Verhältnisse bei weniger hohen Temperaturen, insbesondere auf die in diesem Bereich beobachteten T-Ta₂O₅-verwandten Phasen, konnten wir in dieser Arbeit nicht eingehen.†

Die MeO₂-Grenzphase in Systemen MeO₂-Me₂'O₅ besitzt oftmals ein Rutilgitter. Wie schon länger bekannt ist (21), läßt dieses Bauprinzip einen gewissen Sauerstoffunterschuß zu. Die Frage, ob eine Rutilstruktur mit einem Sauerstoffüberschuß (O/ Σ Me>2.0) realisierbar ist, führte zu einer quantitativen Untersuchung der Zusammensetzung O/ Σ Me im Mischkristallgebiet (Ti, Ta)O_{2±m}.

2. Arbeitstechnik

2.1. Darstellung der Präparate

Alle Experimente mit hoher Reaktionstemperatur (1500°C), die eine vollständige Umsetzung der Komponenten erwarten liess, wurden mit mechanischen Gemengen von TiO₂ und Ta₂O₅ durchgeführt. Hierzu dienten Oxide möglichst hoher Reinheit: TiO₂ (Rutilform) >99.9% (nach Abgabe von ~0.2% H₂O). Ta₂O₅ (*T-Form*);‡ das Präparat enthielt maximal die folgenden Verunreinigungen in ppm: je 1 Fe₂O₃, Al₂O₃, Cr₂O₃, MnO, NiO, CuO, MgO, SnO₂; je 3 U₂O₅, TiO₂; 6 CaO; je 10 ZrO₂, MoO₃; je 30 Nb₂O₅, WO₃; 40 SiO₂.

Ansätze von ~ 1 g wurden von Hand innig vermengt und zu Tabletten (0.6 cm ϕ) gepreßt. Die Erhitzung erfolgte bei dieser Temperatur auf Unterlagen gleicher Zusammensetzung. Die Präparate und ihre Unterlagen§ befanden sich während

[‡] Das Tantalpentoxid mit Analysenangaben verdanken wir der Fa. Ciba, Basel.

der Erhitzung in Schiffchen aus Korund innerhalb eines elektrisch beheizten Korundrohres (Röhrenofen). Die Prüfung auf eine Abgabe von Verunreinigungen aus der Korundwandung (z.B. von Alkali) verlief negativ: Ta_2O_5 zeigte nach dreitägiger Erhitzung auf 1500°C ein unverändertes Guinierdiagramm.

Präparate mit sehr geringem TiO₂-Zusatz (2.4-0.4 at. % Ti; Ti + Ta = 100 %) wurden außer durch unmittelbare Einwaage der Komponenten (Tabelle VII) zum Vergleich auch in 2 Stufen dargestellt: Zunächst wurde ein Gemenge mit 6.7 at. % Ti bei 1500°C in die homogene H2-Phase übergeführt (Tabelle VI). Erneutes Vermengen von H2 mit Ta₂O₅ ergab Vergleichspräparate (Tabelle VII).

Durch eine Erhitzung auf weniger hohe Temperatur (1200–1400°C) lassen sich mechanische Gemenge z.T. nicht vollständig umsetzen (vgl. Abschnitt 7.1.3). Daher wurden Experimente mit Mischfällungen ebenfalls durchgeführt. TiO₂ wurde mit (NH₄)₂SO₄-H₂SO₄ aufgeschlossen. TaCl₅ mit CH₃OH zu einer Lösung mit bekanntem Gehalt umgesetzt. Berechnete Mischungen beider Lösungen wurden mit NH₃ gefällt und nach dem Auswaschen stufenweise erhitzt (Pt-Unterlage). Ergebnisse dieser Experimente sind in Abb. 1 (1200 bis 1450°C) und Tabelle VI wiedergegeben.

Alle Präparate wurden nach einer Erhitzung möglichst schnell (~20 sec) auf Raumtemperatur abgeschreckt, vgl. Abschnitt 7.1.4.

2.2. Röntgenographische Untersuchung

Die Phasenverhältnisse wurden an abgeschreckten Präparaten bei Raumtemperatur untersucht. Alle Röntgenaufnahmen erfolgten in einer Guinierkammer von 360-mm Umfang (Jagodzinsky-Prinzip) mit Cu-K α_1 -Strahlung.

3. Die (Ti, Ta) $O_{2\pm m}$ -Phase mit Rutilstruktur

Erhitzt man TiO₂ an der Luft oder in O₂ (z.B. 1 atm), so erhält man normalerweise (z.B. T = 1100 bis 1450°C) farbloses oder hellgelbes Dioxid in der Rutilform. Mit niedrigeren Sauerstoffpartialdrucken oder bei noch höherer Temperatur (T \ge 1500°C) entstehen dunkel gefärbte, Ti³-haltige Präparate (22). Die Rutilphase kann in diesem Fall, wie schon länger bekannt ist, mit einem gewissen Sauerstoffunterschuß auftreten (19). Bei weiterer Sauerstoff-

§ In einigen Fällen, insbesondere bei weniger hoher Temperatur, wurden die Präparate auf einer Pt-Unterlage erhitzt. Dies gilt z.B. für Experimente der Tabelle V, ferner für Tabelle VI und VII bei Erhitzung auf 1300 und 1400°C. Weitere Angaben vgl. Text.

[†] Untersuchungen hierzu sind im Gange, vgl. (12), (19) und (20).

ABB. 1. Ausdehnung der Rutilmischphase bei Erhitzung an Luft $[P(O_2) = 0.2 \text{ atm}]$. Angaben nach Waring und Roth (25) sind eingezeichnet.

abspaltung beobachtet man eine Serie sauerstoffärmerer rutilverwandter "Hägg-Magnéli-Phasen" (Ti₁₀O₁₉ bis Ti₅O₉) (23). In der Ta-haltigen Rutilphase kann der Sauerstoffgehalt den Wert $O/\Sigma Me = 2.0$ sowohl über- wie auch unterschreiten. Alle Präparate sind ihrem $O/\Sigma Me$ -Verhältnis entsprechend dunkel gefärbt. Quantitativ ergab sich $O/\Sigma Me$ aus der Gewichtsabnahme beim Glühprozeß.

3.1. Experimentelle Angaben

Mechanische Gemenge der reinen, zuvor an der Luft (1000°C) geglühten Oxide TiO₂ und Ta₂O₅ wurden zu Preßlingen ($\phi = 6 \text{ mm}$) von 0.5–0.8 g geformt, die auf einer Pt-Unterlage durch Erhitzung auf 1000-1100°C (3-5 std an der Luft) verfestigt wurden. Der hierbei gemessene Gewichtsverlust setzt sich zusammen aus einem geringen Anteil Restfeuchtigkeit (~0.1% des Ausgangsgewichts), dessen Größe gesondert an den reinen Oxiden bestimmt wurde, und einem Anteil A. A ist auf eine bereits bei dieser Temperatur einsetzende Sauerstoffabspaltung (grauschwarze Färbung!) zurückzuführen. Alle Gewichtsänderungen wurden mit einer Mikrowaage ($\pm 5 \mu g$) gemessen. Zur weiteren Handhabung der vorverfestigten Preßlinge konnte auf eine Pt-Unterlage verzichtet werden, da mechanische Verluste nicht mehr zu befürchten waren. Die gilt in erhöhtem Maße, wenn die Preßlinge auf 1500°C erhitzt worden sind. Gewichtsverfälschungen durch chemischen Transport (24) von Pt, wie er in Gegenwart von O_2 bei hoher Temperatur zu beobachten ist, waren so gleichfalls auszuschließen.

Zur Gleichgewichtseinstellung mit der Gasphase bei 1500°C diente ein elektrisch beheizter Röhrenofen mit einem Arbeitsrohr aus Sinterkorund ("Purox" der Fa. Morgan Refractories). Die $(Ti, Ta)O_{2+m}$ -Preßlinge befanden sich hierbei jeweils auf einer Unterlage aus $(Ti, Ta)O_{2\pm m}$ von gleicher Ausgangszusammensetzung. Als Unterlage dienende Preßlinge wurden bereits vorher bei 1500°C in N₂-Atmosphäre verfestigt; damit konnte ein Verschweissen der Tantaloxid enthaltenden Preßlinge ausgeschlossen werden. Die Erhitzungsdauer zur Bestimmung der Gewichtsänderung (B) betrug im allgemeinen 15 bis 48 Stunden bei 1500°C. Danach wurden die Proben, die sich mit ihren Unterlagen in einem Korundschiffchen befanden, schnell mit diesem aus der heißen Zone des Ofens geschoben. Bereits nach 5-10 sec waren die Proben so weit abgekühlt, daß mit einer weiteren Reaktion nicht zu rechnen war.

Die Summe der Gewichtsänderungen A + B (A bei 1100°C, B bei 1500°C) in der Größe von 3–12 mg liefert den Verlust oder die Aufnahme von Sauerstoff. Die daraus mit Hilfe des bekannten Anfangs-Formelgewichts Ti_{1-2y}Ta_{2y}O_{2+y} berechneten Werte O/ Σ Me bringt Tabelle I.

Das Ausmaß der Sauerstoffabspaltung wurde bei 2 verschiedenen Sauerstoffpartialdrucken bestimmt:

(a) Erhitzung an der Luft; $P(O_2) \sim 0.2$ atm (L in Tabelle I).

(b) Erhitzung in gereinigtem N_2 ; $P(O_2) \sim 10^{-4}$ — 10⁻⁵ atm (N) oder Erhitzung in gereinigtem Argon; $P(O_2) \sim 10^{-4}$ —10⁻⁵ atm (Ar.) Alle Experimente wurden im Gasstrom (2–3 1/std) durchgeführt. Alle Gase wurden durch Abkühlung mit fl.O₂ getrocknet. N₂ und Ar wurden anschließend zur Entfernung

Zusammensetzung vor der Erhitzung		Ergebnis der Erhitzung auf 1500°C					
at.% Ta	$O/\Sigma Me (Anf.)$	Zusammensetzung O/ Σ Me (Ende)	···· • • • •	Sauerstoffabspaltung			
(2 Me = 100%)	(2 Me = 11 + 1a)	Einzelexperimente	mitti. Werte	s/2 (mittl. Werte)			
8	2.04	L 2.013; 2.021; N, L 1.997; 2.016	2.012	0.028			
		N 1.978; 1.979; 1.980;	1.979	0.061			
10	2.05	L 2.016; 2.034; N, L 2.017; 2.022	2.022	0.028			
		N (1.910); 1.975; 1.980; 1.990	1.982	0.068			
12	2.06	L 2.030; 2.044; 2.048; N, L 2.028; 2.036	2.037	0.023			
		N 1.986; 1.988; 1.988; 1.992; 2.000; 2.015	1.995	0.065			
14	2.07	L 2.054; 2.059; N, L 2.036; 2.040	2.047	0.023			
		N 1.958; 1.976; 1.987; 1.990; 1.991; 1.994					
		Ar 1.969; 1.981	1.981	0.089			
16	2.08	L 2.051; 2.072; N, L 2.058	2.060	0.020			
		N 1.964; 1.972; 1.980; 1.989; 1.989; 2.007; (2.045)					
		Ar 1.977; 1.982; 1.982	1.982	0.098			
18	2.09	[L] 2.054; 2.079; [N, L] 2.056; 2.072	2.065	0.025			
		N 1.997; 2.003; 2.005	2.002(?)	0.088			
20	2.10	[L] 2.085; 2.089; [N, L] 2.050; 2.076 N 1946: 1953: 1990: 2,000	2.075	0.025			
		Ar (1.898); N. Ar 1.961	1.970	0.13			

TABELLE I

SAUERSTOFF-METALL-VERHÄLTNIS VON RUTILMISCHKRISTALLEN NACH ERHITZUNG AUF 1500°C^a

^a L = Erhitzung an der Luft, N = in N₂, Ar = in Argonatmosphäre. In Präparaten in [] war bereits die Nachbarphase TiTa₂O₇ röntgenographisch nachweisbar. Werte in () wurden bei einer Mittelwertsbildung nicht berücksichtigt. s/2 = beobachtete Abnahme O/ Σ Me (Anf.)—O/ Σ Me (Ende).

von O_2 über Fe-Pulver (750°C) sowie durch eine weitere Kühlfalle (fl. O_2) geleitet.

Experimente, bei denen die Erhitzung an der Luft stattfand (L), dürften Gleichgewichtsverhältnissen am nächsten kommen. Um eine Gleichgewichtseinstellung von der Seite des geringeren Sauerstoffgehalts kommend ebenfalls zu realisieren, wurden Proben in parallelen Experimenten zunächst in N_2 erhitzt und anschließend an der Luft oxydiert (N, L). Auf diesen beiden Wegen (L und N, L) gewonnene Ergebnisse stimmen, wie Tabelle I zeigt, innerhalb der Fehlergrenzen überein.

In einer Atmosphäre mit niedrigem Sauerstoffpartialdruck (N, Ar) ist die *Pufferkapazität* der Gasphase gering. Wie die stärker streuenden Meßwerte zeigen, wurde hier eine Gleichgewichtseinstellung wahrscheinlich z.T. noch nicht erreicht. Unter N₂ oder Ar gewonnene Ergebnisse sind daher hinsichtlich der O-Abspaltung als Minimalwerte (Maximalwerte für O/ Σ Me) anzusehen.

3.2. Existenzbereich der Rutilphase

Gemenge von TiO₂ und Ta₂O₅ (z.B. 0.5 bis 20 at. % Ta; Σ Ti + Ta = 100% zeigen bereits nach dem Erhitzen an der Luft (z.B. T = 1100-1450°C)

eine graue bis schwarze Färbung. Mit zunehmendem Ta-Gehalt vertieft sich die Dunkelfärbung; man beobachtet ferner einen Gang der Gitterkonstanten mit der Zusammensetzung der Rutilphase. Das Ausmaß der Ta-Aufnahme ist von $P(O_2)$, von der Temperatur und der Art der Nachbarphasen abhängig.

Wir betrachten zunächst den Einfluß der Temperatur bei $P(O_2) = 0.2$ atm (Luft). Die Grenzzusammensetzung der Rutilphase ließ sich im Bereich T = 1200 bis 1500°C röngenographisch am Auftreten der Nachbarphase TiTa₂O₇ erkennen; vgl. Abb. 1. Die Löslichkeit nimmt erwartungsgemäß mit steigender Temperatur zu; bei 1500°C beträgt sie 16-17 at. % Ta. Die gleiche Phasengrenze ergibt sich aus dem Gang der Gitterkonstanten und der c/a Werte mit der Zusammensetzung (Tabelle II, L und Abb. 2). So erhielten wir nach der Erhitzung auf 1500°C (an Luft) mit 16, 18 und 20 at. % Ta die Werte a = 4.6297, 4.6301, 4.6300 und c = 2.9725, 2.9728, 2.9725 Å (19); sie stimmen innerhalb der Fehlergrenzen überein. Einer unabhängigen Untersuchung von Waring und Roth (25) läßt sich als Maximalwert der Gitterkonstanten (nach Erhitzung auf 1523°C) a = 4.628 Å entnehmen.

Z	usammensetzung						Zellvol.
at.% Ta	$O/\Sigma Me$ (ΣMe	= Ti + Ta)		Gitterkon	stanten (Å)		a^2,c
$(\Sigma Me = 100\%)$	vorher	nachher	Erhitzung in	а	с	c/a	(Å ³)
0	2.00(TiO ₂)	2.00	L	4.5929	2.9591	0.6443	62.421
8	2.04	2.013	L	4.6120	2.9667	0.6433	63.103
		1.979	N	4.6156	2.9710	0,6437	63.293
10	2.05	2.016	L	4.6166	2.9681	0.6429	63.259
		2.017	N, L	4.6169	2.9687	0.6430	63.280
		1.910	Ν	4.6194	2.9734	0.6437	63.449
12	2.06	2.048	L	4.6195	2.9691	0.6427	63.360
		1.992	N	4.6247	2.9774	0.6438	63.680
		1.988	Ν	4.6252	2.9782	0.6439	63.711
14	2.07	2.054	L	4.6254	2.9699	0.6421	63.539
		1.994	N	4.6335	2.9821	0.6436	64.024
		1.976	N	4.6303	2.9809	0.6438	63.910
16	2.08	2.058	N, L	4.6297	2.9725	0.6421	63.713
		1.989	N	4.6354	2.9852	0.6440	64.143
18	2.09	2.054	IL]	4.6301	2.9728	0.6421	63,730
20	2.10	2.085	iL)	4.6300	2.9725	0.6420	63,721
		1.990	N	4.6444	2.9890	0.6436	64.474
		1.898	Ar	4.6440	2.9891	0.6436	64.465

TABELLE II GITTERKONSTANTEN VON RUTILMISCHKRISTALLEN NACH ERHITZUNG AUF 1500°C (AUS GUINIERAUFNAHMEN)^a

^a Zur Bedeutung von L, N, Ar vgl. Tabelle I.

Der Einfluß des Sauerstoffdruckes geht daraus hervor, daß beim Erhitzen in N₂ bzw. Argon bei den hier verwendeten Ti/Ta-Verhältnissen die Grenze der Rutilphase nicht erreicht wurde. Rüdorff und Luginsland (26) haben gezeigt, daß unter reduzierenden Bedingungen schon bei 1100°C die Hälfte des Ti durch Ta ersetzt werden kann. In diesem Fall beobachtete man (26) als Nachbarphase nicht TiTa₂O₇, sondern Ta₂O₅ (und nicht vollständig umgesetztes Ta).

3.3. Überlegungen zur Sauerstoffbilanz

Wenn eine Sauerstoffabspaltung zu einer Rutilstruktur (Ti, Ta) $O_{2\pm m}$ führt, so kann man für die Sauerstoffbilanz Gleichung (1) schreiben:

$$(1-n)\text{TiO}_{2} + n\text{TaO}_{2.5} = (\text{Ti}_{s}{}^{3}\text{Ti}_{1}{}^{4}_{-n-s}\text{Ta}_{n}{}^{5})\text{O}_{2+0.5(n-s)} + 0.25s\,\text{O}_{2}.$$
 (1)

Hierbei ist $\pm m = 0.5$ (n - s), womit Werte $s \ge n$ prinzipiell möglich sind. Die Formulierung von Ti³ statt Ta⁴ wird dadurch gestützt, daß eine Mischkristallreihe (Ti, Ta)O₂ beim Überschreiten von 50 at. % Ta abbricht (26). Ferner sind TaO₂ und andere niedere Oxide des Tantals unter Gleichgewichtsbedingungen als feste Stoffe nicht bekannt (27), (28). Betrachten wir zunächst den Fall, daß eine Sauerstoffabspaltung zu einem *idealen* Rutilgitter mit $O/\Sigma Me = 2.00$ führt, so ist in Gleichung (1) s = n. Experimente unter den hier verwendeten Bedingungen (Abschnitt 3.1.) lieferten im allgemeinen Werte $s \neq n$; d.h. das Verhältnis $O/\Sigma Me = 2.00$ wurde sowohl über- wie auch unterschritten (Tabelle I).

Experimente, in denen eine Erhitzung Ta-haltiger Präparate an der Luft erfolgte (L, Tabelle I), führten zu Zusammensetzungen O/ Σ Me (Ende) oberhalb 2.00 O/ Σ Me. Wie man erkennt, ist die O-Abspaltung $s/2 = O/\Sigma$ Me (Anf.) – O/ Σ Me (Ende) im untersuchten Bereich von 8–20 at. % Ta (1500°C) mit $s/2 = 0.025 \pm 0.003$ O/ Σ Me annähernd konstant. Der beobachtete Sauerstoffüberschu β m = 0.5 (n-s) der Rutilphase liegt mit 0.012 O/ Σ Me (8 at. % Ta) bis 0.065 O/ Σ Me (18 at. % Ta) außerhalb der experimentellen Fehlergrenzen. Es ist zu erwarten, daß die Größe s, die im Bereich 0.08 < n < 0.18 nahezu konstant gefunden wurde, mit kleineren Werten für n ebenfalls abnimmt.

Es war nicht möglich, die beobachtete Gewichtsänderung darauf zurückzuführen, daß im Gitter O^{2-} durch N^{3-} ersetzt wird. Mikroanalysen (modifizierte Kjeldahl-Methode) an einer bei 1500°C

ABB. 2. Zellvolumen und c/a-Verhältnisse der Rutilphase (Ti, Ta)O_{2±m} (Werte aus Tabelle II). Ziffern an den Meßpunkten geben den Ta-Gehalt (at. % Ta; Σ Ti + Ta = 100%) an. Werte von Rüdorff und Luginsland (26) in (). Mit [] gekennzeichnete Präparate enthalten die Nachbarphase TiTa₂O₇. Zur Bedeutung von L; N, L usw. vgl. Tabelle I.

geglühten Probe ergaben, daß ein N-Gehalt unterhalb der Nachweisgrenze liegt, d.h. es ist

$$N/\Sigma Me < 0.0002$$

Als Rutiltyp mit Sauerstoffüberschuß ist bisher nur die Rutilmischphase (Ti, Nb) O_{2+m} , die sich in analoger Weise aus Ti O_2 und Nb₂O₅ beim Erhitzen an der Luft bildet, von Goldschmidt (29) beschrieben worden. Angaben zur Sauerstoff bilanz liegen jedoch nicht vor. Eigene Untersuchungen hierzu sind im Gange (1), (20). NbO₂, das ein deformiertes Rutilgitter besitzt, wurde ebenfalls mit einem Sauerstoffüberschuß beobachtet (17).

Bei niedrigem Sauerstoffpartialdruck (N; Ar) wird s > n und damit $O/\Sigma Me < 2.00$ (Tabelle I; N,Ar). Die O-Abspaltung (s/2) nimmt mit steigendem Ta-Gehalt von 0.06 O/ Σ Me (8 at. % Ta) bis 0.13 O/ Σ Me (20 at. % Ta) zu; sie läßt sich nach Gleichung (1) mit dem Wert m = -0.02 annähernd beschreiben. Wie die Streuung der Werte (vgl.z.B. N; 18 at.% Ta) zeigt, wurden Gleichgewichtszusammensetzungen hier z.T. noch nicht erreicht. Man erkennt jedoch aus den Röntgenaufnahmen, daß unter diesen Bedingungen (N) auch Präparate mit 20 at. % Ta noch im homogenen Mischkristallgebiet liegen. Dies ist mit der Beobachtung eines Mischkristallbereiches $TiO_2 - (Ti_{0.5}Ta_{0.5})O_2$ (26) im Einklang. Es ist ferner hervorzuheben, daß bei abnehmendem Sauerstoffgehalt noch mit 1.91 O/Σ Me (10 at. % Ta) bzw. 1.898 O/Σ Me (20 at. % Ta) röntgenographisch einphasige Rutilmischkristalle vorlagen. Eine Phase $Me_{10}O_{19}$, die analog zur bekannten Verbindung Ti10O19 (23) denkbar wäre, trat hier nicht auf.

3.4. Strukturelle Angaben

Über den strukturellen Einfluß der Mischkristallbildung ist wenig bekannt. Gitterkonstanten einiger Mischkristalle, die bei Raumtemperatur gemessen wurden,† bringt Tabelle II. In allen Fällen ist eine mit dem Ta-Gehalt zunehmende Gitteraufweitung (a und c) gegenüber reinem Rutil [a = 4.5920; c = 2.9591 Å; c/a = 0.6444; $a^2 \cdot c = 62.397$ Å³ (30)] zu beobachten. Dies zeigt der Gang des Zellvolumens (Abb. 2) besonders deutlich.[‡] Nach Erhitzung an der Luft (L; N, L) ist die Gitteraufweitung geringer als bei weitergehender O-Abspaltung (N; Ar); bei Präparaten mit $O/\Sigma Me < 2.00$ ist ein Zusammenhang zwischen dem Zellvolumen und dem Verhältnis $O/\Sigma Me$ nicht mehr nachzuweisen. Bemerkenswert ist, daß das Verhältnis c/a in der Reihe der sauerstoffreichsten Mischkristalle (L; N, L) bei zunehmendem Ta-Gehalt und O/Σ Me-Verhältnis bis zum Wert c/a = 0.642 (16–17 at. % Ta) abfällt (Abb. 2). Bei stärkerer O-Abspaltung (O/ Σ Me < 2.0) ist ein des Ta-Gehalts auf die c/a-Werte Einfluß (c/a = 0.6436 bis 0.6440) nahezu verschwunden; ob eine Variation von $O/\Sigma Me$ das Verhältnis c/abeeinflußt, ist hier nicht mehr zu erkennen. Messungen von Rüdorff und Luginsland (26) an (Ti, Ta)O₂-Mischkristallen ergaben Gitterkonstanten, die zwischen unseren Werten für $O/\Sigma Me > 2$ und $O/\Sigma Me < 2$ liegen. Dies ist zu erwarten, da die Präparate nach den Arbeitsbedingungen der Autoren eine Zusammensetzung $O/\Sigma Me \sim 2$ haben. Aus den Gitterkonstanten (26) berechnete Werte für das Zellvolumen (10 bzw. 20 at. % Ta) und c/a-Verhältnis (10 at. % Ta) fügen sich in unser Beobachtungsmaterial gut ein (Abb. 2).§

Ein Sauerstoffüberschuß kann prinzipiell zu einer Struktur führen, bei welcher Kationenleerstellen auftreten oder Sauerstoff auf Zwischengitterplätze geht. Aufgrund der Raumerfüllung erscheinen O-Teilchen auf Zwischengitterplätzen wenig wahrscheinlich. Für Rutil mit Sauerstoffunterschuß wird u.a. eine Überlagerungeiner Kationen- und Anionenfehlordnung diskutiert (31). Ferner ist analog zur Ti₅O₉-Struktur (32) eine Besetzung von Zwischengitterplätzen mit Me-Teilchen denkbar. Für Zusammensetzungen mit $O/\Sigma Me < 2.0$ erscheint eine stärkere Gitteraufweitung (bei zunehmendem Ta-Zusatz) mit einem Einbau von Me-Teilchen auf Zwischengitterplätzen plausibel, während eine geringere Änderung der Gitterkonstanten im Bereich $O/\Sigma Me > 2.0$ mit dem Auftreten von Kationenleerstellen vereinbar sein dürfte. Zur Aufklärung der strukturellen Verhältnisse sind weitere Untersuchungen physikalischer Eigenschaften notwendig.

4. Die Verbindung TiTa₂O₇

4.1. Darstellung und Phasengrenzen

Alle Glühbehandlungen geschahen an Luft (Pt-Unterlage); Experimente mit Variation des Sauerstoffdrucks wurden nicht ausgeführt. Nur dieser Fall wird auch in den folgenden Erörterungen betrachtet.

Neben der mit Ta gesättigten Rutilmischphase (Abb. 1) ist TiTa₂O₇ als Nachbarphase stabil. Das Röntgenbild dieser Verbindung liegt bei der Zusammensetzung $Ti_{0.333}Ta_{0.667}O_{2.333} \land TiTa_2O_7$ nach Erhitzung auf 1500°C (an der Luft, 10 std) rein vor (Abb. 3a). Die TiTa₂O₇-Phase besitzt keine merkliche Breite: Unter den genannten Bedingungen ist in Präparaten Ti_{0.35}Ta_{0.65}O_{2.325} die Rutilphase noch erkennbar, während andererseits mit einer Zusammensetzung Ti_{0.326}Ta_{0.674}O_{2.337} schon H2 (vgl. Abschnitt 7) als höhere Nachbarphase röntgenographisch nachzuweisen ist. Auf Guinieraufnahmen zweiphasiger Präparate TiTa₂O₇ + Rutil und TiTa₂O₇ + H2 ist für die Linienlagen des TiTa₂O₇ ein Gang mit der Zusammensetzung nicht nachweisbar. Mit niedrigerer Erhitzungstemperatur (1100-1200°C) ist auf der Ta₂O₅-reichen Seite eine

§ Ein Experiment mit 20 at. % Ta (26) ergab den hohen Wert c/a = 0.6447 (Abb. 2); die Ursache hierfür ist noch unbekannt.

[†] Die Gitterkonstanten wurden mit einer von Andersson (23) übernommenen (tetragonalen) Indizierung berechnet.

[‡] Die beobachtete Streuung der Meßwerte (8-18 at. % Ta) gegenüber einer ausgleichenden Kurve ($a^2.c$ und c/a in Abb. 2) wird weitgehend herabgesetzt, wenn man die Zelldimensionen (von Präparaten mit O/Σ Me > 2.0) mit gemittelten O/Σ Me-Werten der Tabelle I kombiniert.

ABB. 3. Guinieraufnahmen (CuK α_1) von Phasen des Typs Me₃O₇ und Me₁₂O₂₉. Winkelbereich $\theta = 3-36^{\circ}$. Als Vergleich α -Quarz (unten). $a = \text{TiTa}_2\text{O}_7$; $c = \text{TiNb}_2\text{O}_7$; b = Mischkristall Ta: Nb = 1:1; $d = \text{Ti}_2\text{Ta}_5\text{Nb}_5\text{O}_{29}$; $f = \text{Ti}_2\text{Nb}_{10}\text{O}_{29}$; e = Mischkristall Ta: Nb = 1:3 (d, e, f orthorhombisch); $g = \text{Ti}_2\text{Ta}_5\text{Nb}_5\text{O}_{29}$; $i = \text{Ti}_2\text{Nb}_{10}\text{O}_{29}$; h = Mischkristall Ta: Nb = 1:3 (g, h, i monoklin).

(TiO₂-haltige) T-Ta₂O₅-Variante anstelle von H2 als Nachbarphase zu beobachten. Geht man von einem stöchiometrischen Gemenge TiO₂ + Ta₂O₅ aus, so erhält man nach der Erhitzung auf 1100° bis < 1500°C ebenfalls TiTa₂O₇, man erkennt auf der Guinieraufnahme jedoch noch Anteile der nicht umgesetzten Komponenten (Ta₂O₅ in der *T*-Form!). Bei Gleichgewichtsverhältnissen ist bereits bei dieser Temperatur die (TiO₂-haltige!) H2-Phase zu erwarten (Abschnitt 7).

Eine Dunkelfärbung der Präparate, die man im Zweiphasengebiet auf der TiO_2 -reicheren Seite beobachtet, ist auf den Rutilanteil zurückzuführen. Die reine Phase $TiTa_2O_7$ sowie zweiphasige, Ta_2O_5 -reichere Präparate sind farblos.

4.2. Die Ti(Nb, Ta)₂O₇-Mischphase

Guinieraufnahmen von TiTa₂O₇ und von der analogen Verbindung TiNb₂O₇† sind sehr nahe verwandt, aber klar unterscheidbar. Ausgehend von Gemengen TiNb₂O₇/TiTa₂O₇ = 3:1; 1:1 und 1:3 erhielten wir nach 12-stündiger Erhitzung bei 1400°C(3:1) bzw. 1450°C(1:1;1:3) homogene Präparate; die Guinieraufnahmen vom gleichen Typ zeigen einen Gang mit der Zusammensetzung (Abb. 3 a-c). TiTa₂O₇ und TiNb₂O₇ sind demnach durch eine Mischkristallreihe verbunden.

Überträgt man die von Wadsley für TiNb₂O₇ mitgeteilte Indizierung (34) auf Guinieraufnahmen von TiTa₂O₇ (Tabelle III), so ergibt sich eine nahe Übereinstimmung der Zelldimensionen (Tabelle IV). Aufgrund der genannten Beobachtungen ist wahrscheinlich, daß das von Wadsley aufgeklärte Bauprinzip von TiNb₂O₇ (34) für TiTa₂O₇ ebenfalls zutrifft.

5. Das Mischkristallgebiet Ti₂(Nb, Ta)₁₀O₂₉

Im System TiO₂-Nb₂O₅ existiert die Phase Ti₂Nb₁₀O₂₉ (18), (34). Im analogen System mit Ta₂O₅ war eine Phase Ti₂Ta₁₀O₂₉ bisher nicht zu beobachten. Erhitzte man Gemenge mit $1 < Ta_2O_5$:TiO₂ < 7 auf hohe Temperatur (1200-1500°C), so war neben der Verbindung TiTa₂O₇ nur

† Die Möglichkeit einer Analogie führte uns zur Darstellung von TiTa₂O₇ (2). Gleichzeitig und unabhängig von uns fanden Hoch und Butrymowicz (33) und später Waring und Roth (25) diese Verbindung.

TABELLE III

Pulveraufnahme von TiTa2O7; CuK α_1 -Strahlung; $\lambda = 1.5405$ Å

I (geschätzt)	h k l	sin ² θ.10 ⁵ (gemessen)	$\sin^2\theta$.10 ⁵ (berechnet)	d (Å) (gemessen)
10	100	561	567	10.28
25	102	662	668	9.467
10	002	761	765	8.829
80	200	2260	2266	5.124
75	104	2299	2299	5.080
15	204	2668	2672	4.715
15	004	3059	3059	4.404
100	$011 \\ 202 $	4290	4287 } 4357 }	3.719
35	111	4519	4522	3.623
20	104	4955	4952	3.460
90	300	5089	5099	3.415
80	206	5158	5169	3.391
20	113	5381	5388	3.321
20	106	5452	5459	3.299
15	013	5813	5817	3.195
15	306	6004	6011	3.143
30	404	6804	6817	2.953
50	211	7210	7217	2.869
75	115	7776	7784	2.762
75	215 302	7826	7825) 7853 }	2.753
10	313	7922	7931	2.737
40	406	7991	7987	2.725
70	31 I	8388	8391	2.659
15	315	8999	8999	2.568
15	400	9052	9065	2.560
15	208	9193	9195	2.541
65	106	9436	9439	2.507
20	213	10066	10073	2.428

TABELLE IV Elementarzelle von TiTa₂O₇ und TiNb₂O₇^a

TiTa ₂ O ₇ (19)	TiTa ₂ O ₇ (25)	TiNb2O7 (34)
a = 11.847 Å b = 3.806 Å c = 20.39 Å $\beta = 120^{\circ}16'$	c = 11.831 Å b = 3.804 Å a = 20.397 Å $\beta = 120^{\circ}14'$	a = 11.93 Å b = 3.81 Å c = 20.44 Å $\beta = 120^{\circ}10'$

^a Aufgrund der Aufstellung vergleichbare Werte sind in cincr Zeile angegeben.

die Phase H2 (Abschnitt 7) nachzuweisen. Wir versuchten daher, die denkbare Phase $Ti_2Ta_{10}O_{29}$ durch Mischkristallbildung mit $Ti_2Nb_{10}O_{29}$ zu 15 stabilisieren. Experimente, in denen $Ti_2Nb_{10}O_{29}$ zusammen mit einem Gemenge $2TiO_2 + 5Ta_2O_5$ auf 1200-1500°C erhitzt wurde (Tabelle V), führten im Bereich Ta:Nb = 1:3 bis 1:1 zu einphasigen Präparaten. Die Mischkristallreihe bricht ungefähr bei Ta:Nb = 1 ab. Dies geht aus Experimenten mit den Zusammensetzungen Ta:Nb = 3:2 bis 3:1 hervor, in denen als zusätzliche Phase vorwiegend Ti(Nb, Ta)_2O_7 zu beobachten war.

Der Verbindungstyp (Me, Nb)₁₂O₂₉ tritt in einer monoklinen und in einer orthorhombischen Modifikation auf (34). In allen Fällen, in denen beide Modifikationen gefunden wurden [mit Me = Nb(IV), Ti, Fe, Co, Ni, Zn, Mg] geht die monokline Form mit steigender Temperatur (bei ~ $1100-1400^{\circ}C$) irreversibel in die orthorhombische Form über (1). Mischkristalle $Ti_2(Nb, Ta)_{10}O_{29}$ verhalten sich analog; hierbei nimmt die Temperatur, die für eine vollständige Umwandlung in die orthorhombische Form benötigt wird, mit dem Verhältnis Ta: Nb zu. Mit Ta: Nb = 1:3 ist der Übergang wie mit der reinen Komponente Ti₂Nb₁₀O₂₉ bereits nach einer Erhitzung auf 1400°C (z.B. 15 std) vollständig. Präparate mit Ta: Nb = 2:3 und 1:1, die sich bei 1400°C auch nach längerer Erhitzungsdauer nicht vollständig umwandeln lassen, gehen bei 1500°C (2 std) glatt in die orthorhombische Form über.

6. Das Mischkristallgebiet Ti(Nb, Ta)24O62

Experimente mit der Phase TiNb₂₄O₆₂, die im System $TiO_2-Nb_2O_5$ als Nachbarphase von Ti₂Nb₁₀O₂₉ auftritt, zeigten, daß eine begrenzte Substitution von Nb durch Ta möglich ist. Wir gingen hierbei von Präparaten (Ti, Nb)O_{2.467} entsprechend $TiO_2 + 7Nb_2O_5$ aus. Diese Zusammensetzung stellt die untere Grenze eines Homogenitätsgebietes dar, das von der genannten Phase [ideale Zusammensetzung TiNb₂₄O₆₂ \triangle 2.48 O/ Σ Me (35)] realisiert wird (1), (5). (Ti, Nb)O_{2.467} wurde zusammen mit einem Gemenge $TiO_2 + 7Ta_2O_5$ erhitzt; hierbei erhielten wir mit Ta:Nb = 1:3 und 2:3 einphasige Präparate von (Ti, Nb, Ta)O_{2.467}. Mit Ta:Nb = 1:1 waren die Präparate nach dem Erhitzen heterogen; eine vollständige Umsetzung war bei Verhältnissen Ta: $Nb \ge 1$ nicht mehr zu erzwingen. Die Grenze der Mischbarkeit lag damit bei ~ 40 at. $\frac{1}{2}$ Ta (Σ Nb + Ta = 100 $\frac{1}{2}$). Die Glühungen (an Luft; Pt-Unterlage) erfolgten in allen Fällen bei 1200°C (20 std) und in parallelen Experimenten bei 1400°C (15 std).

	Ergebnis nach der Erhitzung (Guinieraufnahmen)				
Zusammensetzung Ta:Nb	45 std 1300°C	2 std 1500°C			
1:3	MK (monokline +	1500°C:Schmelze			
	orthorhombische Form)	1400°C: MK (orthorhombisch)			
2:3	MK (monokline + wenig orthorhombische Form)	MK (orthorhombisch)			
1:1	MK (monoklin)	MK (orthorhombisch)			
3:2	$Ti_2(Nb, Ta)_{10}O_{29}$ (monoklin) + Sp	$Ti_2(Nb, Ta)_{10}O_{29}$ (orthorhombisch) + $Ti(Nb, Ta)_2O_7$			
2:1		wie $3:2 + Sp$			
3:1	$\begin{array}{l} Ti_2(Nb,Ta)_{10}O_{29} \\ (monoklin) + \\ Ti(Nb,Ta)_2O_7 + Sp \end{array}$	wie 3:2 + Sp			

TA	BEL	JLE	V
----	-----	------------	---

DARSTELLUNG VON MISCHKRISTALLEN Ti2(Nb, Ta)10029"

^{*a*} MK = es liegt vollständige Umsetzung zum Mischkristall vor. Sp = Spur einer weiteren Phase ist vorhanden.

7. Phasen der H-Ta₂O₅-Familie

7.1. Thermisches Verhalten im Bereich $2.467 \le O/\Sigma Me \le 2.50$

7.1.1. Phasenverhältnisse bei hoher Temperatur. Geht man von der Zusammensetzung TiTa₂O₇ zu höherem Ta₂O₅-Gehalt über, so beobachtet man nach einer Erhitzung auf hohe Temperatur (z.B. 1400-1500°C) ein Zweiphasengebiet bis ~2.467 O/Σ Me (6.7 at.% Ti; Σ Me = 100%.) In diesem Bereich tritt eine mit H-Ta₂O₅ nahe verwandte Phase H2 auf, die mit Zusammensetzungen 2.467 $\leq O/\Sigma$ Me ≤ 2.484 rein erhalten wird (Tabelle VI). Das Gebiet der H2-Phase läßt sich mit der Genauigkeit 2.467 \pm 0.002 und 2.485 \pm 0.0015 O/Σ Me abgrenzen; innerhalb der Grenzen zeigen die Röntgenbilder eine geringe Linienverschiebung mit der Zusammensetzung.

Mit weiterer Zunahme des Ta_2O_5 -Gehalts werden die Röntgenbilder komplizierter; es treten die untereinander und auch mit H2 verwandten Phasen H1 und H-Ta₂O₅ auf. Aus der Tabelle VII geht hervor, in welchem Bereich der Zusammensetzung die Phasen H1 und H zu beobachten sind; hierbei wurde das Mischkristallgebiet der Hochtemperaturmodifikation H-Ta₂O₅ mit "H" bezeichnet.[†]

Wie man erkennt, liegen Präparate der H1-Phase an ein Zweiphasengebiet H2 + H1 anschließend mit

† Es ist besonders darauf hinzuweisen, daß zwischen den Hochtemperaturmodifikationen $H-Ta_2O_5$ und $H-Nb_2O_5$ (7) keine nähere Strukturverwandtschaft besteht; vgl. Abschnitt 8. 2.4885 bis ~2.492 O/ Σ Me homogen vor. In einem weiteren, an H1 angrenzenden Zweiphasengebiet (H1 + H) treten in gewissem Umfange Reaktionsverzögerungen auf (vgl. Abschnitt 7.1.3), insbesondere an der Grenze des H1-Gebiets. Die Breite des sehr schmalen Zweiphasen gebiets H1 + Hist daher nur grob mit $2.492 \le O/\Sigma Me \le 2.494$ anzugeben. Mit $O/\Sigma Me = 2.494$ sind die Präparate nach einer Erhitzung auf 1400°C homogen; die Röntgenbilder zeigen im Bereich der H-Phase einen Gang mit der Zusammensetzung, wobei sie in das Diagramm von H-Ta₂O₅ übergehen. Im H-Bereich wird offenbar TiO₂ in das H-Ta₂O₅-Gitter aufgenommen. Das Mischkristallgebiet wurde nach Erhitzung auf 1500°C bis 2.495 O/ Σ Me, nach Erhitzung auf 1400°C bis 2.494 O/ Σ Me beobachtet.

7.1.2. Abgrenzung zu weniger hohen Temperaturen. Mit niedrigeren Temperaturen gelangt man in das Existenzgebiet von $T-Ta_2O_5$. Reines Ta_2O_5 liegt unterhalb von 1360°C in der *T*-Form, oberhalb dieser Temperatur in der *H*-Form vor (36), (37). Die reversible Umwandlung verläuft in beiden Richtungen langsam.

Ein Zusatz von TiO₂ beeinflußt die Umwandlungstemperatur; daneben beobachtet man auch Reaktionsverzögerungen (Abschnitt 7.1.3). In solchen Fällen ist auch nach längerer Erhitzung oberhalb der Umwandlungstemperatur ein geringer Anteil der Ausgangskomponente $T-Ta_2O_5$ nachweisbar (Tabelle VII, Präparat 15, 18, 23).

Die Umwandlungstemperatur, bei der T-Ta₂O₅

	Ausgangs-Zusammensetzung		Erhitzung a	n der Luft			
Präparat Nr.	at. % Ti (Σ Me = 100%)	$O/\Sigma Me$ ($\Sigma Me = Ti + Ta$)	°C	Std	Phasenverhältnisse nach Guinieraufnahmen		
1	8	2.460	1430	36	H2 + wenig TiTa ₂ O ₇		
2	7.4	2.463	1430	36	$H2 + Spur TiTa_2O_7$		
3	6.7	2.467	1350	44	H2		
3a	6.7	2.467	1500	48	H2		
4	4	2.480	1300	60	H2		
4a	4	2.480	1400	50	H2		
5	3.6	2.482	1300	60	H2		
5a	3.6	2.482	1400	50	H2		
6	3.2	2.484	1300	60	H2 (wie Nr.9a)		
6a	3.2	3.484	1400	50	H2		
7	3.2	2.484	1400	70	H2 + Spur H1		
8	2.9	2.4855	1400	70	H2 + wenig H1		
9	2.8	2.4860	1300	60	H2 + H1		
9a	2.8	2.4860	1400	50	H2 (wie Nr 6)		
10	2.8	2.4860	1400	70	H2 + H1		
11	2.7	2.4865	1400	70	H1 + H2 (wie Nr. 12a)		
12	2.4	2.4880	1300	60	H1 + Spur H2		
12a	2.4	2.4880	1400	50	H1 + H2 (wie Nr. 11)		
13	2.4	2.4880	1400	70	H1 + H2 (wie Nr. 12a)		

TABELLE VIDarstellung der Phase H2^a

^a Präparat Nr. 1–3 aus Mischfällungen, Nr. 3a-13 aus Gemengen der Oxide TiO₂ + Ta₂O₅. Im Gebiet der reinen Phase H2 zeigen die *d*-Werte einen Gang mit der Zusammensetzung.

in H-Ta₂O₅ oder in die verwandten Phasen H1 oder H2 übergeht, nimmt in Richtung steigenden TiO₂-Gehalts, d.h. also mit dem Wert O/ Σ Me ab. Die Verhältnisse für 2.492 < O/ Σ Me < 2.498 bei 1300°C zeigt Tabelle VIII; Reaktionsverzögerungen konnten hier durch vorherige Erhitzung auf höhere Temperatur (1400°C) zurückgedrängt werden. Danach liegt bei 2.494 O/ Σ Me reine H-Phase vor, während sie in heterogenen Präparaten mit 2.496 und 2.498 O/ Σ Me neben T-Ta₂O₅ auftritt. Bei 1300°C existiert offenbar zwischen der Phase H mit einer Grenzzusammensetzung 2.494 O/ Σ Me und T-Ta₂O₅ ein Zweiphasengebiet; dies ist mit Beobachtungen von Waring und Roth (25) im Einklang.

Die größte Ausdehnung in Richtung niedrigerer Temperatur (bis zum Auftreten von $T-Ta_2O_3^{\dagger}$ und Ti Ta_2O_7) zeigt das Gebiet der H2-Phase. In eigenen orientierenden Experimenten mit Mischfällungen gingen Präparate der Zusammensetzung 2.467 O/ Σ Me nach hinreichender Erhitzungsdauer (39 Tage) bei 1190°C noch nahezu vollständig in H2 über. Bei 1100°C (18 Tage) gelang eine Umwandlung † Hier tritt eine TiO₂-haltige T-Ta₂O₅-Phase auf (19), (25); unterhalb von ~ 2.48 O/ Σ Me (19) liegt daneben TiTa₂O₇ vor. in H2 nicht mehr. Es wäre denkbar, daß die Umwandlungsgeschwindigkeit der Präparate bei der niedrigeren Temperatur schon zu langsam ist. Darauf deuten Experimente hin, in denen die H2-Phase zunächst bei hoher Temperatur (1380°C) gewonnen und anschließend bei niedrigerer Temperatur weiter erhitzt wurde. In diesem Fall blieb H2 bei 1100°C oder 1000°C (66 std) unverändert; nach einer Erhitzung bei 950°C von gleicher Dauer lag jedoch ein Gemenge von TiTa₂O₇ und T-Ta₂O₅ vor. Damit läßt sich für die Umwandlung von Präparaten mit ~2.467 O/ Σ Me eine Temperatur $1000 > T > 950^{\circ}C$ abschätzen. Nach Beobachtungen von Waring und Roth (25) ist die Umwandlung bei dieser Temperatur nicht mehr nachweisbar: die Autoren finden eine höhere Umwandlungstemperatur von etwa 1150°C. Möglicherweise verhalten sich Präparate aus Mischfällungen hier anders als Oxidgemenge.

7.1.3. Reaktionsverzögerungen. Mechanische Gemenge hochschmelzender Oxide lassen sich über eine Festkörperreaktion oft nur schwierig vollständig umsetzen. Mischfällungen, die im System $TiO_2-Nb_2O_5$ zur Gewinnung einphasiger

TABELLE VI	L	
------------	---	--

BILDUNG DER PHASEN H	UND HTa ₂ C	5 (H = TiC	2-ENTHALTENDES MISCHKRISTALLGEBIET	von H-J	Γa ₂ O ₅)	ľ
----------------------	------------------------	------------	------------------------------------	---------	----------------------------------	---

	Ausgangs-Zu	Ausgangs-Zusammensetzung		n der Luft		
Präparat Nr.	at. % Ti (Σ Me = 100%)	$O/\Sigma Me$ ($\Sigma Me = Ti + Ta$)	°C	Std	Phasenverhältnisse nach Guinieraufnahmen	
12–13	2.4	2.4880	1300-1400	50-70	H1 + H2, vgl. Tabelle VI	
14	2.3	2.4885	1400	70	HI	
15	2.0	2.4900	1300	60	H1 ^b	
15a	2.0	2.4900	1400	46	H1	
16	1.8	2.4910	1400	22	H1	
17	1.7	2.4915	1400	22	H1	
18	1.6	2.4920	1300	60	H1 ^b	
18a	1.6	2.4920	1400	46	H1	
18b	1.6	2.4920	1400	72	H1	
19	1.6	2,4920	1400	22	H1 + Sp H	
19a	1.6	2.4920	1500	10	H1 + Sp H	
20	1.5	2.4925	1400	22	H1 + Sp H	
20a	1.5	2,4925	1500	10	H1 + H	
21	1.4	2,4930	1400	22	H + Sp H1	
21a	1.4	2,4930	1400	96	H1 (wie Nr 18a)	
21b	1.4	2,4930	1500	10	H + wenig H1	
22	1.3	2,4935	1400	22	H + Sp H1 (?)	
22a	1.3	2.4935	1400	96	H1 + Sp H(?)	
22b	1.3	2,4935	1500	10	H + H1	
23	1.2	2,4940	1300	60	H (wie Nr. 25) ^{b,c}	
23a	1.2	2.4940	1400	46	н	
24	1.2	2,4940	1400	22	H + Sp H1 (?)	
24a	1.2	2,4940	1500	10	H + Sp H1	
25	1.1	2,4945	1400	22	н.	
25a	1.1	2.4945	1400	96	H	
25b	1.1	2,4945	1500	10	H + Sp H1	
26	1.0	2,4950	1500	10	н	
27	0.9	2,4955	1500	10	H	
28	0.8	2.4960	1300	60	H (wie Nr. 23) ^c	
28a	0.8	2.4960	1400	40	H	
29	0.4	2.4980	1300	60	H (wie Nr. 23) ^c	
29a	0.4	2.4980	1400	46	H ^b	
30	0.0	2.5000	1450	10	H-Ta ₂ O ₅	

^a Alle Präparate aus mech. Gemengen der Oxide ($TiO_2 + Ta_2O_5$), jedoch Nr. 16, 17, 19, 20, 21, 22, 24, 25, 26, und 27 Gemenge von H2 mit Ta_2O_5 .

^b Enthält sehr geringe Spur T-Ta₂O₅ (Reaktionsverzögerungen).

^c Enthält T–Ta₂O₅-Anteil, der mit O/ Σ Me von 2.494 bis 2.498 zunimmt.

Präparate dienten (1), (18), wurden im vorliegenden System ebenfalls herangezogen (Abschnitt 2). Präparate aus Mischfällungen, die zur Umwandlung in H-Ta₂O₅-Varianten auf hohe Temperatur erhitzt werden, erleiden im allgemeinen bei beginnender Erhitzung eine Entmischung in T-Ta₂O₅ und z.B. TiTa₂O₇. Ein T-Ta₂O₅-Anteil führt wie bei mechanischen Gemengen zu Reaktionsverzögerungen; eine vollständige Umsetzung ist hier nur durch hinreichende Erhitzungsdauer und hohe Temperatur (z.B. 1500°C) zu erreichen. Analoge Verhältnisse sind bei der Darstellung einphasiger $TiTa_2O_7$ -Präparate zu beobachten (Abschnitt 4.1).

Tabelle VIII bringt Experimente (B), in denen einphasige, bei höherer Temperatur gewonnene Präparate auf eine bei weniger hoher Temperatur

	ng O/ Σ Me (Σ Me = Ti +	Ta)		
Erhitzungsart	2.492	2.494	2.496	2.498
A	H1-Phase + Spur T-Ta ₂ O ₅	H-Phase + Spur T-Ta ₂ O ₅	H-Phase + wenig T-Ta ₂ O ₅	H-Phase + T-Ta ₂ O,
В	H1-Phase, <i>kein</i> T-Ta₂O₅	H-Phase, kein T-Ta₂O₅	H-Phase + weniger T-Ta ₂ O ₅ als bei A (Spur)	H-Phase + weniger T-Ta ₂ O ₅ als bei A

TABELLE VIII Experimente zur Gleichgewichtseinstellung^a

^a Ergebnisse nach Guinieraufnahmen: A = Gemenge von TiO₂ + Ta₂O₅, nach Erhitzung 60 std bei 1300°C. B = Gemenge von TiO₂ + Ta₂O₅, 1. Erhitzung 70 std auf 1400°C, 2. Erhitzung 60 std auf 1300°C.

(1300°C) eintretende Entmischung untersucht wurden. Ein Vergleich mit Präparaten (A), die nur auf die niedrigere Temperatur von 1300°C erhitzt worden waren, zeigt, daß diese Temperatur zum Erreichen von Gleichgewichtszuständen noch nicht ausreicht. Danach ist der Anteil an T-Ta₂O₅ in den Präparaten (A)† noch zu groß. Das Auftreten von T-Ta₂O₅ in Präparaten mit 2.492 und 2.494 O/ Σ Me und die Größe des T-Ta₂O₅-Anteils bei 2.496 und 2.498 O/ Σ Me (A) läßt sich damit wahrscheinlich auf Reaktionsverzögerungen zurückführen.

Die Röntgenbilder der H-Ta₂O₅-verwandten Phasen lassen ebenfalls z.T. Reaktionsverzögerungen erkennen. Eine Erhitzungsdauer von 22 std bei 1400°C (Tabelle VII, Präparat Nr. 16, 17, 19, 20, 21, 22, 24, und 25) führte zu weniger scharfen Röntgenbildern als die längere Zeit von z.B. 46 oder 96 std bei gleicher Temperatur. Ein Einfluß der Erhitzungsdauer auf die beobachteten Phasenverhältnisse liegt offenbar bei Präparat Nr. 21 und 21 a (Tabelle VII) vor: entsprechende Verhältnisse bei Präparaten verschiedener Herkunft zeigen Nr. 7, 8, und 9a (Tabelle VI) sowie Nr. 18a und 19 (Tabelle VII). Reaktionsverzögerungen bei der Ausbildung der Phasen H2 und H1 treten bevorzugt dort auf, wo ein Zweiphasengebiet mit höherem O/Σ Me-Wert angrenzt. Offenbar nimmt die Ordnungsgeschwindigkeit mit steigendem O/ Σ Me-Verhältnis ab. Ein analoges Verhalten beobachtet man in Nb₂O₅-enthaltenden Systemen (1).

7.1.4. Verhalten während des Abschreckvorganges. Alle Beobachtungen an zahlreichen Nb_2O_5 -enthaltenden Verbindungen (1), (7), (17) sprechen dafür, † Diese Experimente sind auch in der Tabelle VII (Nr. 18, 23, 28, und 29) enthalten. daß der Aufbau einer neuen Struktur während des Abschreckens nicht stattfindet. Auch im Ta-System findet offenbar beim Abschrecken keine Phasenneubildung statt, so daß die Phasenverhältnisse auch nach dem Abschrecken richtig erfaßt werden.[‡]

Vorgänge, die eine Diffusion der Komponenten erfordern, sind bei Temperaturen $T < 1200-1300^{\circ}C$ bereits recht langsam. So setzen sich Gemenge von TiO₂ mit Ta₂O₅ (Smp. 1872°C) bei gleicher Temperatur schlechter um als solche von TiO₂ mit Nb₂O₅ [Smp. 1491°C (37)]. Ta₂O₅-Präparate, die über eine chemische Transportreaktion (24) gewonnen wurden, behielten auch nach längerer Erhitzung (500-600°C) in Gegenwart eines Transportmittels einen äußerst schlechten Ordnungsgrad bei. Gleichgewichte im festen Zustand stellen sich selbst bei 1300-1400°C erst nach Stunden ein; ferner läuft die reversible Umwandlung der Modifikationen T- und H-Ta₂O₅ ebenfalls nur langsam ab, vgl. Abschnitt 7.1.3. Daher ist anzunehmen, daß z.B. Zweiphasengebiete während des Abschreckvorganges erhalten bleiben und daß Präparate, die bei hoher Temperatur homogen waren, sich im Verlauf der Abkühlung nicht entmischen.

Das Fehlen einer Phasenneubildung beim Abschreckvorgang schließt nicht aus, daß auch bei niedriger Temperatur noch ein diffusionsloser Übergang in eine andere nahe verwandte Struktur erfolgt. Eine solche (*displazive*) Umwandlung, die bei 320°C reversibel auftritt, wurde von Laves und Petter für H-Ta₂O₅ beschrieben (8). Waring und Roth (25), die diese Beobachtung bestätigten, fanden eine weitere Umwandlung bei ~950°C. ‡ Dies wird z.B. dadurch gestützt, daß ein Zusammenhang zwischen der Erhitzungsdauer bei hoher Temperatur und der Schärfe der Röntgenbilder klar erkennbar ist. Danach ist H-Ta₂O₅ bei hoher Temperatur tetragonal; beim Abkühlen liegt unterhalb von 950°C eine monokline und unterhalb von 320°C eine trikline H-Ta₂O₅-Variante vor (vgl. Tabelle IX). Hierbei ist hervorzuheben, daß H-Ta₂O₅ bei Temperaturen T < 1360°C metastabil ist. Eine Umwandlung in die thermodynamisch stabile T-Form ist im Temperaturgebiet von 1360° bis ~ 1000°C durch schnelles Abkühlen einzufrieren.

Waring und Roth (25) führen die bei Raumtemperatur vorliegenden Phasenverhältnisse, insbesondere die Zweiphasengebiete auf Entmischungs- und Lösungsvorgänge beim Durchlaufen eines Temperaturgebiets von 500–200°C zurück. Die mit Hochtemperaturröntgenaufnahmen beobachteten Verhältnisse werden von den Autoren mit der H-Ta₂O₅-Umwandlung bei 320°C in Zusammenhang gebracht. Diese Vorgänge müßten mit Änderungen der Zusammensetzung verbunden sein. Nach unseren Beobachtungen ist nicht zu erwarten, daß Diffusionsvorgänge bei so niedriger Temperatur das Verhältnis TiO₂/Ta₂O₅ merklich

	Erhitzungs- Temperatur		H-Ta ₂ O ₅ -Formen	TiO2-haltige H-Ta2O3-Varianten
	°C	Literaturzitat	(reines $Ta_2O_5^b$)	(steigender TiO ₂ - Zusatz→)
A R	1320 20	Lagergren u. Magnéli (39)	orthorhombisch c = 3.735; b = 3.79; a = 35.6 Å]
A R A(1)	1500–1700? 20 1450	Zaslavskij, Zvinchuk, u. Tutov (40) Laves u. Petter (8)	tetragonal $a = 3.801; c = 35.67 \text{ \AA}$	(Reinheitsgrad?)
R	20	Maria a n Bath mara # fal	a = 3.795; c = 35.54 Å	
R	20	vgl. (25)		a = ? c = ?
A R	1640 950	Waring u. Roth (25)	H tet a = 3.81; c = 36.09 Å	H tet ss (R 1100°C bei 5 at. % Ti)
A(k) R	1450 400	Laves u. Petter (8)	a = 5.365; b = a; c = 35.85 Å $\beta = 91.00^{\circ}$	
A R	1640 350 (bis 925)	Waring u. Roth (25)	H mon ^c $a = \sqrt{2.a} \operatorname{tri}; b = \sqrt{2.b} \operatorname{tri}; c \sim c$ $\beta \sim 92^{\circ}$	H mon ss tri
A R	1640 20 (bis 500)	(25)		H' mon ss ^d a = 5.367; b = 5.368; c = 35.70 Å $\beta = 91^{\circ}42'$
A R	1500 20	diese Arbeit		H2 ^a $a = 5.38; b = 5.35; \ c = 35.71 \text{ Å}$ $\beta = 91.66^{\circ}$
A(k) R	1450 20	Laves u. Petter (8)	$a = 3.784; b = 3.802; c = 35.82 \text{\AA}$ $\beta = 91.00^{\circ}$? (Reinheitsgrad?)
A R	1640 20	Waring u. Roth (25)		"30:1" a = 3.794; b = 3.807; c = 35.70 Å $\beta = 90^{\circ}51'$
A R	1400 20	diese Arbeit		$ \begin{array}{l} \mu_{17} \\ \mu_{1$
A R	1775 20	Waring u. Roth (25)	H tri b = 3.785; a = 3.801; c = 35.74 Å $a = 90^{\circ}115'; a = 90^{\circ}45'; a = 90^{\circ}15'; a = 90^{\circ}1$	H tri ss
A > R	1360 20	Franklin u. Wu, vgl. (25)	a = 7.58; b = 7.59; c = 35.71 Å (= 2·3.75) (= 2·3.795) $a = 90 23^{\circ} \cdot 8 = 91 43^{\circ} \cdot 9 = 90 12^{\circ}$	
A R	1450 20	diese Arbeit	$a = 3.78; b = 3.80; c = 35.74 \text{ Å} \alpha = 90.20^\circ; \beta = 90.96^\circ; \gamma = 89.97^\circ$	H

TA	BELLE IX
PHASEN DE	R H-Ta2O5-FAMILIEª

^a Gitterkonstanten nach Literaturangaben. A = Temperatur, von welcher auf Raumtemperatur abgeschreckt wurde (A(k) = kurze, A(l) = lange Erhitzungsdauer), R = Temperatur, bei der die Röntgenaufnahme durchgeführt wurde.

 ^b Präget Anterne Subarte, die von den Autoren (vgl. Zitat) als reines Ta2O5 angesehen wurden. Zur Frage des Reinheitsgrades vgl. Text. Einander entsprechende Gitterkonstanten stehen übereinander.

^c Die Gitterkonstanten sind auf H tri bezogen.

^d Präparate mit 5.5 at. % Ti; ^e mit 6,7 at. % Ti; ¹ mit 1.6 at. % Ti. In allen Fällen *S*Ti + Ta = 100 %.

ändern. Wir nehmen daher an, daß die bei Raumtemperatur beobachteten Phasenverhältnisse dem stabilen System bei hoher Temperatur entsprechen. Eine unmittelbare Untersuchung ist nur durch Hochtemperaturröntgenaufnahmen möglich; solche sind vorgesehen.

7.2. Strukturelle Zuordnung der H-Ta₂O₅-Varianten

7.2.1. Röntgenographische Charakterisierung. Die Röntgenbilder der Hochtemperaturmodifikation H-Ta₂O₅ und der mit zunehmendem TiO₂-Zusatz daraus hervorgehenden Mischphase (H) sowie der Varianten H1 und H2 sind außerordentlich nahe verwandt (Abb. 4). Für eine sichere Identifizierung benötigt man Vergleichsaufnahmen der reinen Phasen mit einem guten Auflösungsvermögen. Zur weiteren Charakterisierung und zur Untersuchung gewisser struktureller Beziehungen lassen sich die Gitterkonstanten der Phasen heranziehen. Damit wird die Auffassung gestützt, daß hier 3 selbständige Phasen vorliegen.

 $H-Ta_2O_5$. Reines Ta₂O₅ wurde 10 std auf 1450°C erhitzt. Die Meßwerte der Guinieraufnahmen (Raumtemperatur) bringt Tabelle X. Die Indizierung erfolgte nach der Methode von P. M. De Wolff (38). Es wurde eine geringe Aufspaltung gewisser Reflexe erkannt, die zu einer triklinen Anordnung führt. Aufgrund einer Ausgleichsrechung ergeben sich als Gitterkonstanten:

a = 3.78,	b = 3.80,	c = 35.74 Å,
$\alpha = 90.20^{\circ},$	$\beta = 90.96^{\circ}$,	$\gamma = 89.97^{\circ}$.

Die Guinierdiagramme zeigen bei der Aufnahme von TiO₂ eine geringe kontinuierliche Änderung der Linienlagen bis zur Zusammensetzung ~2.494 O/Σ Me. Für diesen, als H-Phase bezeichneten Bereich, in dem die Indizierung ebenfalls gilt, wurden die Guinieraufnahmen nicht vermessen.

H1-Phase. Für eine Zusammensetzung $O/\Sigma Me = 2.492$ (Präparat 18b, Tabelle VII) bringt Tabelle XI Meßwerte aus Guinieraufnahmen. Die Indizierung erfolgte im Anschluß an H-Ta₂O₅; durch Fortfallen der dort beobachteten Aufspaltung gelangt man zu einer monoklinen Anordnung des reziproken Gitters. Die Gitterkonstanten sind a = 3.79; b = 3.81; c = 35.73 Å; $\beta = 90.79^{\circ}$.

Wie ein Vergleich der Gitterkonstanten von $H-Ta_2O_5$ und H1 zeigt, besitzen die Elementarzellen analoge Abmessungen, die sich im wesentlichen durch die trikline Deformation beim Übergang von H1 nach $H(H-Ta_2O_5)$ unterscheiden.

H2-Phase. Ein Präparat (Nr. 3a, Tabelle VI) der Zusammensetzung 2.467 O/ Σ Me (6.7 at. % Ti) wurde nach einer Erhitzung auf 1500°C (48 std) untersucht. Die Meßwerte der Guinieraufnahme bringt Tabelle XII. Die Indizierung erfolgte in Anlehnung an die H1-Phase mit der Annahme, daß die beiden kurzen Achsen den Diagonalen bei H1 ungefähr entsprechen. Man erhält so die Gitterkonstanten: a = 5.38; b = 5.35; c = 35.71Å; $\beta = 91.66°$. Eine geringe Unsicherheit besteht in der Indizierung der Reflexe (200) und (020), möglicherweise ist hier (400) und (040) vorzuziehen. Eine Vorstellung von der Verwandschaft der Phasen

ABB. 4. Guinieraufnahmen (CuK α_1) von Phasen der H-Ta₂O₅-Familie. Winkelbereich $\theta = 3-36^\circ$. Als Vergleich α -Quarz (unten). $a = \text{H}-\text{Ta}_2\text{O}_5$; b = H-Phase (H-Ta₂O₅-Mischkristall mit 1.2 at. % Ti); c = H1 (1.6 at. % Ti); d = H1 (2.3 at. % Ti); e = H2 (3.2 at. % Ti); f = H2 (6.7 at. % Ti).

I (geschätzt) h k l

8

114

TABELLE X

Pulveraufnahme von H–Ta₂O₅ (Präparat 30) CuK α_1 -Strahlung, $\lambda = 1.5405$ Å

I		$\sin^2\theta$. 10 ⁵	$\sin^2\theta.10^5$	d (Å)
(geschätzt)	hkl	(gemessen)	(berechnet)	(gemessen)
20	004	741	743	8.948
20	008	2976	2973	4.465
100	01 Ī	4151	4151	3.780
	011		4157	
10	10Ī	4186	4184	3.765
100	101	4221	4214	3.749
80	103	4529	4527	3.619
	013		4535	
20	103	4619	4615	3.584
1	104	4867	4837	3.492
	014		4863	
1	104	4959	4955	3.459
90	105	5246	5240	3.363
	013		5254	
80	015	5291	5284	3.349
60	105	5391	5388	3.317
50	107	6328	6326	3.062
60	017	6370	6363	3.052
60	017	6415	6405	3.041
60	107	6533	6532	3.014
100	0012	6695	6689	2.977
10	108	7274	7243	2.856
5	109	7788	7783	2.760
15	019	7846	7843	2.750
25	019	7898	7898	2.741
40	109	8048	8048	2.715
2	11I	8282	8286	2.677
	111		8298	
5	1 T 2	8499	8473	2.642
	112		8478	
10	1010	8951	8945	2.575
	Ĩ14		8960	
15	114	9055	9053	2.560
	114		9071	
3	113	9344	9330	2.520
	Ī15		9366	

wird jedoch bereits durch das vorliegende Bild vermittelt.

7.2.2. Vergleich mit Literaturangaben. Für die Elementarzelle von H-Ta₂O₅ und seinen Varianten werden im Prinzip 4 Anordnungen mit verschiedener Symmetrie angegeben; vgl. Tabelle IX. Alle vorliegenden Beobachtungen erfolgten im metastabilen Existenzgebiet der H-Ta₂O₅-Familie; vgl. Abschnitt 7.1.2.

Eine orthorhombische Zelle ist bisher nur von Lagergren und Magnéli (39) beschrieben worden,

004 747 20 744 8.915 30 008 2971 2974 4.469 90 011 4123 4128 3.793 10 10Ī 4149 4155 3.781 80 101 4181 4179 3.767 75 013 4499 4500 3.631 103 4503 10 103 4574 4575 3.602 10 103 5215 5222 3.373 70 015 5246 5243 3.363 50 105 5342 5342 3.333 40 107 6308 6314 3.067 60 017 6359 6359 3.055 50 107 6481 6482 3.026 100 0012 6686 6692 2.979 5 109 7766 7777 2.764 25 019 7841 7816 2.751 25 109 7991 7993 2.725 8 114 8918 8898 2.579

TABELLE XI PULVERAUFNAHME DER H1-PHASE (PRÄPARAT 18b; 1.6at. % Ti) CuK α_1 - Strahlung, $\lambda = 1.5405$ Å

 $\sin^2\theta$. 10⁵

(berechnet)

8993

d (Å)

(gemessen)

2.568

 $\sin^2\theta$. 10⁵

(gemessen)

andere Autoren konnten diese Zelle bisher nicht bestätigen.

8998

Eine tetragonale Zelle haben Zaslavskij, Zvinchuk und Tutov (40) beobachtet. Nach längerer Erhitzungsdauer der Präparate erhielten Laves und Petter (8) ebenfalls eine bei Raumtemperatur tetragonale H-Ta₂O₅-Variante $[\alpha$ -Ta₂O₅ bei (8)]. Waring und Roth (25) konnten von reinem Ta₂O₅ (in der triklinen H-Form) ausgehend ein tetragonales Gitter oberhalb eines reversiblen metastabilen Umwandlungspunktes (~950°C) nachweisen. Eine tetragonale H-Ta₂O₅-Phase war nur dann auf Raumtemperatur abzuschrecken, wenn man den Präparaten gezielt Verunreinigungen zugesetzt hatte (25). Eigene Experimente an reinem Ta_2O_5 und an Präparaten mit TiO₂-Zusatz führten in Übereinstimmung mit den Angaben von Waring und Roth in keinem Fall zu einer tetragonalen H-Ta₂O₅-Phase (röntgenograph. Untersuchung bei Raumtemperatur). Entgegenstehende Beobachtungen sind möglicherweise darauf zurückzuführen, daß eine tetragonale H-Ta₂O₅-Phase wie in den genannten Experimenten von Waring und Roth bei Raumtemperatur stabilisiert wurde. Hierbei ist an einem unzureichenden Reinheitsgrad der Ta₂O₅-Präparate, z.B. durch eine Aufnahme von Fremdstoffen während langdauernder Erhitzungen zu denken.

TABELLE XII Pulveraufnahme der H2-Phase (Präparat 3a: 6.7 At. %Ti) CuK α_1 - Strahlung, $\lambda = 1.5405$ Å

(geschätzt) h k l (gemessen) (berechnet) (gemessen) 10 0 0 4 745 745 8.922 1 ^a 1 0 3 2440 2415 4.951 1 ^a 0 1 3 2500 2489 4.870 1 0 3 2523 25 0 0 8 2979 2980 4.462 1 ^a 1 0 5 3130 3125 4.360 1 1 ^a 0 1 5 3250 3234 4.267 1 0 5 304 100 1 1 0 4136 4120 3.787 1 1 1 4149 100 1 1 1 4176 4185 3.769 1 0 7 4207 1 ^a 1 1 2 4320 4342 3.705 0 1 7 4352 70 1 0 7 4468 4458 3.640 80 1 0 8 5174 5174 3.324 1 1 3 4578 4593 3.600 80 <	I		$\sin^2\theta$. 10 ⁵	$\sin^2\theta$. 10 ⁵	d (Å)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(geschätzt)	h k l	(gemessen)	(berechnet)	(gemessen)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	004	745	745	8.922
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1ª	103	2440	2415	4.951
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1ª	013	2500	2489	4.870
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		103		2523	
1* 1 0 3 3130 3125 4.360 1* 0 1 5 3250 3234 4.267 1 0 5 3304 3140 3140 3787 1 0 1 1 1 0 4136 4120 3.787 1 1 1 4176 4185 3.769 1 0 7 4207 4207 1* 1 1 2 4320 4342 3.705 0 1 7 4352 70 1 0 7 4468 4458 25 1 1 3 4578 4593 3.600 80 1 0 8 5174 5174 3.386 1 1 5 5195 580 1 1 5 5195 80 1 1 5 5370 5374 3.324 1*** - 5523 - 3.270 1* 0 0 11 5630 5635 3.241 1 0 5 5661 1 1 1.67 1** 1 0 9 5940 5984 3.167 50 1 1 7 6262 6277 3.078 60 1 1 7	25	008	2979	2980	4.462
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1ª	103	3130	3125	4.360
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1ª	015	3250	3234	4.267
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		105		3304	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	110	4136	4120	3.787
100 1 1 4176 4185 3.769 1 0 7 4207 4207 1 ^a 1 1.2 4320 4342 3.705 0 1.7 4352 3.644 1.13 4485 25 1 1.3 4578 4593 3.600 80 1.0.8 5174 5174 3.386 1.1.5 5370 5374 3.324 1 ^{a,b} 5523 3.270 1 ^a 0.0.11 5630 5635 3.241 1.0.9 5850 5842 3.184 1 ^a 0.1.9 5850 5842 3.184 1 ^a 1.0.9 5940 5984 3.167 50 1.1.7 6262 6277 3.078 60 1.1.7 6529 6528 3.014 1.0.10 6528 1.00 0.012 6705 6706 2.975 1 ^a 1.1.8 7230 7244 2.869 1 ^a 1.1.8 1.0.11 7759		11I		4149	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	111	4176	4185	3.769
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		107		4207	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1ª	112	4320	4342	3.705
70 1 0 7 4468 4458 3.644 1 1 3 4485 4485 25 1 1 3 4578 4593 3.600 80 1 0 8 5174 5174 3.386 1 1 5 5370 5374 3.324 $1^{a,b}$ - 5523 - 3.270 1^{a} 0 0 11 5630 5635 3.241 $10 9$ 5850 5842 3.184 1^{a} 0 1 9 5850 5842 3.184 1^{a} 1 0 9 5940 5984 3.167 50 1 1 7 6262 6277 3.078 60 1 1 7 6529 6528 3.014 1 0 10 6528 100 0 0 12 6705 6706 2.975 1^{a} 1 1 8 7230 7244 2.869 1 1^{a} 1 1 8 7230 7244 2.869 1^{a} 1 0 11 7759 7731 2.765 1 0 0 13 7866 7870 2.746 <t< td=""><td></td><td>017</td><td></td><td>4352</td><td></td></t<>		017		4352	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	107	4468	4458	3.644
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		113		4485	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	113	4578	4593	3,600
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	108	5174	5174	3.386
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		113		5195	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	115	5370	5374	3.324
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ^{<i>a</i>,<i>b</i>}		5523		3.270
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1ª	0011	5630	5635	3.241
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		109		5661	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1^a	019	5850	5842	3.184
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 <i>ª</i>	109	5940	5984	3.167
	50	117	6262	6277	3.078
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	117	6529	6528	3.014
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 O IÕ		6528	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	0012	6705	6706	2.975
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1ª	118	6960	6957	2.914
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1ª	118	7230	7244	2.869
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1ª	1 O TT	7410	7488	2.825
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0111	7726	7705	2.771
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	119	7759	7731	2.765
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0013	7866	7870	2.746
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1011	7932	7882	2.735
5 2 0 I 8228 8211 2.685 10 2 0 Z 8360 8315 2.664 0 2 1 8327 20 1 1 10 8972 8956 2.572 1 0 12 8971	45	119	8060	8054	2.713
10 2 0 2 8360 8315 2.664 0 2 1 8327 20 1 1 10 8972 8956 2.572 1 0 12 8971	5	20Ĩ	8228	8211	2.685
0 2 1 8327 20 1 1 10 8972 8956 2.572 1 0 12 8971	10	202	8360	8315	2.664
20 1 1 10 8972 8956 2.572 1 0 12 8971		021		8327	
1 0 12 8971	20	1 1 10	8972	8956	2.572
		1012		8971	

" Dieser Reflex war nur auf stark überbelichteten Aufnahmen erkennbar.

^b Die Zugehörigkeit dieses Reflexes ist unsicher.

Eine bei Raumtemperatur monokline H-Ta₂O₅-Variante (α'' -Ta₂O₅) beobachteten Laves und Petter (8), wenn die Glühbehandlung der Präparate nur von geringer Dauer (vgl. tetragonales α -Ta₂O₅) war. Gitterkonstanten gleicher Größenordnung waren von anderen Autoren mit reinen Ta₂O₅-Präparaten nicht zu erhalten. Einen Übergang der α'' -Form[†] in Präparate mit geringerer (monokliner) Linienaufspaltung (α^* -Ta₂O₅) beobachtete Moser (41) nach längerer Erhitzungsdauer (z.B. 65 std bei 1550°C).‡ Eine monokline Zelle, deren Metrik mit α'' -Ta₂O₅ vergleichbar ist, erhielten Waring und Roth (25) mit der Zusammensetzung Ta_2O_5 : TiO₂ = 30:1 (1.6 at.% Ti) nach Abkühlung auf Raumtemperatur. Entsprechendes gilt für die analoge von uns beobachtete H1-Phase. Die Übereinstimmung der Elementarzellen von a"-Ta₂O₅, "30:1" und H1 ist nur dann verständlich, wenn Präparate der a"-Phase TiO₂ oder andere, sich ähnlich verhaltende Fremdstoffe enthielten. Ob diese monokline Phase auch bei der Aufnahme anderer Stoffe als TiO₂ entstehen kann, müßte noch geklärt werden.

Eine andere monokline Form (α') entsteht nach Untersuchungen von Laves und Petter (8) aus α'' -Ta₂O₅ oberhalb eines reversiblen Umwandlungspunktes bei 320°C. Diese Beobachtung wurde durch Waring und Roth (25) bestätigt. Die von ihnen beschriebene Ta₂O₅-Phase (H mon) erstreckt sich bei hinreichend hoher Temperatur (z.B. ~600°C) über die gesamte Breite des Mischkristallbereichs der H-Ta₂O₅-Varianten (25). Bei hohem TiO₂-Gehalt und niedrigerer Temperatur ging diese Phase (H mon *ss*) in eine andere (H' mon *ss*) über, die auch bei Raumtemperatur zu erhalten war. Gitterkonstanten von H' mon *ss* (25) und von unserer H2-Phase stimmen recht gut überein.

Eine bei Raumtemperatur *trikline* Elementarzelle beobachteten Waring und Roth (25) sowie Franklin und Wu [vgl. (25)]; die Autoren gingen hierbei von reinem Ta₂O₅ aus. Eigene Präparate von reinem Ta₂O₅ zeigten bei Raumtemperatur ebenfalls eine trikline Zelle. Bei vergleichbarer Aufstellung stimmen unsere Gitterkonstanten mit den Beobachtungen der genannnten Autoren gut überein; Franklin und Wu geben jedoch *a* und *b* um den Faktor 2 größer an.

8. Bauprinzipien

Die bei hoher Temperatur im System auftretenden Phasen lassen sich 3 verschiedenen Bauprinzipien zuordnen.

† Bei Moser (41) wird diese Form α -Ta₂O₅ genannt.

‡ Möglicherweise wurden von diesen Präparaten (α^*) im Laufe der Glühbehandlung ebenfalls Fremdsubstanzen aufgenommen, wie es für tetragonales (α -)Ta₂O₅ in Betracht zu ziehen ist.

8.1. Rutilphase

Die Rutilphase (Ti, Ta) $O_{2\pm m}$ ist im hier untersuchten Bereich mit der einfachen tetragonalen Elementarzelle des Rutiltyps (30) zu beobachten. Dies schließt nicht aus, daß Fehlordnungen (insbesondere mit $m \neq 0$) auftreten; vgl. Abschnitt 3.4. Ein Einfluß der Zusammensetzung (Ta-Gehalt) auf die Gitterdimensionen (Zellvolumen) ist nachzuweisen.

8.2. $TiTa_2O_7$ und strukturverwandte, durch Niob stabilisierte Phasen

8.2.1. Glieder der Reihe Me_{3n}O_{8n-3}. Die Verbindung TiTa₂O₇, die offenbar mit TiNb₂O₇ isotyp ist, realisiert ein in Nb₂O₅-Systemen (vgl. Abschnitt 1) häufig anzutreffendes Bauprinzip (4). Wie Wadsley erstmals mit einer Untersuchung der Struktur von $TiNb_2O_7$ zeigen konnte (34), sind diese Stoffe aus Me-O-Oktaedern aufgebaut, die innerhalb definierter Bereiche (MeO₃- Blöcke) über Spitzen verknüpft sind. In der Wachstumsrichtung der Kristalle (b-Achse) setzt sich die Spitzenverknüpfung der Me-O-Oktaeder unbegrenzt fort; in den beiden anderen Richtungen treten in charakteristischen Intervallen Kantenverknüpfungen (shear planes) auf. Senkrecht zur b-Achse lassen sich damit durch shear planes begrenzte MeO₃-Blöcke als quadratische oder rechteckige Bauelemente der Idealstrukturen erkennen.

 $TiNb_2O_7$ und die Nachbarphase $Ti_2Nb_{10}O_{29}$ sind nach ihrem Aufbau Glieder (mit n = 3 und 4) der Wadsley'schen Reihe $Me_{3n}O_{8n-3}$ (34). In den Strukturen dieser Verbindungen erkennt man MeO3-Blöcke mit einer Ausdehnung von 3×3 (n = 3) und 3×4 (n = 4) Oktaedern. Bemerkenswert ist, daß $TiTa_2O_7$ das bisher einzige Beispiel einer Verbindung darstellt, die mit TiNb₂O₇ $(3 \times 3$ -Blöcke) wahrscheinlich isostrukturell ist (Abschnitt 4.2). In der benachbarten Struktur (Me, Nb)₁₂O₂₉ lassen sich die Me-Teilchen weitgehend variieren (1), (5). Bisher kennen wir jedoch keine Hinweise auf die Existenz weiterer analoger Phasen (Me, Nb)₃O₇ oder $(Me, Ta)_3O_7$ (Me \neq Ti) mit einem Aufbau aus 3 \times 3-Blöcken, obgleich zahlreiche Systeme daraufhin untersucht wurden (1), (5). Blockstrukturen wurden in Ta₂O₅-reichen Systemen bisher nur noch für den Verbindungstyp MeTa₉O₂₅ (Me = P, As, V) und $2Nb_2O_5 \cdot Ta_2O_5$ beobachtet (16), (37). Wie eine Strukturuntersuchung an der isostrukturellen Verbindung PNb_9O_{25} gezeigt hat (15), sind diese Stoffe ebenfalls aus 3×3 -Blöcken aufgebaut; die Verknüpfung (Reihenformel $Me_{3n+1}O_{8n+1}$) ist jedoch von $TiNb_2O_7$ ($TiTa_2O_7$) verschieden. Andere als

 3×3 -Blöcke sind für überwiegend Ta₂O₅-enthaltende Strukturen bisher nicht bekannt.

Die strukturverwandte Verbindung Ti₂Nb₁₀O₂₉, die aus 3×4 -Blöcken aufgebaut ist, läßt einen Ersatz von Nb nur bis zu einem Verhältnis Ta: Nb $Z \leq 1$ zu (Abschnitt 5). Dies gilt für beide Modifikationen, die sich im Prinzip nur in der Anordnung der Blöcke unterscheiden (34). Der (Me, Me')₁₂O₂₉- Typ, der hier mit ~50 at. % Ta ($\Sigma Me' = Nb + Ta = 100\%$) einen geringeren Ersatz von Nb toleriert als der Typ $(Me, Me')_{3}O_{7}$, erlaubt mit Me' = Nb eine weitgehende Variation der Me-Teilchen. So wurde z.B. die monokline Variante dieser Struktur mit Me = Nb(IV), V(IV), Al, Fe, Cr, Co, Ni, Zn, Mgbeobachtet (1), (5); analoge Beobachtungen liegen für die orthorhombische Form vor. Die größere Toleranz dieses Verbindungstyps gegenüber einem Austausch von Me-Teilchen ist nicht nur darauf zurückzuführen, daß der Me-Anteil an der Gesamtzusammensetzung mit einem Übergang vom $(Me, Me')_3O_7$ zum $(Me, Me')_{12}O_{29}$ beträchtlich abnimmt.[†] Daß nicht mehr als 50% der Me'-Teilchen durch Ta ersetzbar ist, könnte durch eine große Stabilität der Ta-reicheren Nachbarphase bedingt sein.

8.2.2. Glieder der Reihe $Me_{3n+1}O_{8n-2}$. Die Beobachtung, daß z.B. 3×4 -Blöcke bis zu einem gewissen Ta-Gehalt der Phase Ti₂(Nb, Ta)₁₀O₂₉ zu realisieren sind, erlaubt noch keine Aussage über die thermodynamische Stabilität dieser Blöcke. In solchen Fällen müssen die Stabilitätsverhältnisse der Nachbarphasen mit berücksichtigt werden. Es war jedoch von prinzipiellem Interesse, ob andere Verbindungstypen, die aus 3×4 -Blöcken aufgebaut sind, ebenfalls Ta aufnehmen. Experimente mit der Phase TiNb₂₄O₆₂ (25) bestätigen eine begrenzte Mischkristallbildung, die sich bis etwa 40 at. % Ta $(\Sigma Nb + Ta = 100\%)$ erstreckt (Abschnitt 6). $TiNb_{24}O_{62}$ ist als Glied (n = 8) der Reihe $Me_{3n+1}O_{8n-2}aus 3 \times 4$ -Blöcken aufgebaut, die jedoch in anderer Weise als in der Reihe Me_{3n}O_{8n-3} verknüpft sind. Strukturen dieses Typs enthalten Me-Teilchen auf Tetraederplätzen (35), (43).

Die genannten Beobachtungen mit den Verbindungstypen (Ti, Me)₁₂O₂₉ und (Ti, Me)₂₅O₆₂ (Me = Nb, Ta) zeigen übereinstimmend, daß Strukturen mit 3×4 -Blöcken in Ta₂O₅-enthaltenden Systemen ebenfalls auftreten können. Hierbei ließ sich der Ta₂O₅-Anteil nicht über den Wert † Die Verbindungstypen (Me, Me')₂₂O₅₄ und (Me, Me')₄₇O₁₁₆, die im System mit Ti nicht auftreten, ließen sich bisher nur mit (Me, Me') = Nb darstellen (5). Ein Glied mit n = 5 der Reihe Me_{3n}O_{8n-3} war bisher nur durch gleichzeitigen Ersatz von O durch F als MgNb₁₄O₃₅F₂ zu erhalten (42). Ta:Nb ~ 0.7 bis 1 erhöhen. Geht man zu Strukturen über, die neben 3×4 -Blöcken auch noch 3×5 -Blöcke enthalten, so nimmt die Löslichkeit für Ta₂O₅ ab. H-Nb₂O₅, das als Glied (n = 9) der Reihe Me_{3n+1}O_{8n-2} (43) Blöcke beider Größen enthält, vermag bis zur Zusammensetzung Ta:Nb ~ 0.15 (1420°C) Ta₂O₅ aufzunehmen (12).† Bei höherem Ta₂O₅-Zusatz beobachtet man die Verbindung 2Nb₂O₅·Ta₂O₅, die aus 3×3 -Blöcken aufgebaut ist (15), (16), die anders verknüpft sind.

8.3. Phasen der H--Ta₂O₅-Familie

Das Bauprinzip dieser Phasen ist nach Laves, Moser und Petter (9), (44) mit P-Nb₂O₅ nahe verwandt. Die Autoren untersuchten die Verwandtschaftsbeziehungen zwischen tetragonalem "a- Ta_2O_5 " (vgl. auch Abschnitt 7.2.2) und P-Nb₂O₅. Idealisierte Bauelemente beider Strukturen sind wahrscheinlich Zick-Zack-Ketten aus Me-O-Oktaedern mit einem formalen Verhältnis O/ Σ Me = 2.5 (7), die (innerhalb der Ketten) über Kanten verknüpft sind. Durch Spitzenverknüpfung der Me-O-Oktaeder fügen sich parallel verlaufende Zick-Zack-Ketten zu Schichten zusammen, die ebenfalls über Oktaederspitzen miteinander verbunden sind. Die räumlichen Verhältnisse erlauben, daß die Oktaederketten benachbarter Schichten entweder parallel oder senkrecht zueinander verlaufen; dies führt zu verschiedenen Schichten-Abfolgen (AA; AB). Wie aus der Länge der c- Achse hervorgeht, liegt in der $R-Nb_2O_3$ -Struktur (10) die einfache Abfolge AA vor (alle "Ketten" parallel). P-Nb₂O₅ besitzt die Abfolge ABAB, α -Ta₂O₅ eine kompliziertere Anordnung $[c(R-Nb_2O_5) = 12.79; c(P-Nb_2O_5) = 25.5;$ $c(\alpha-Ta_2O_5) = 35.5$ Å]. Aufgrund der analogen Ausdehnung in der c-Richtung ist wahrscheinlich, daß die trikline und die monoklinen Formen von H-Ta₂O₅ einen prinzipiell ähnlichen Aufbau wie die tetragonale Phase besitzen. Dies wird auch durch die beobachteten diffusionslosen Umwandlungen (8), (25) gestützt. Es ist ferner hervorzuheben, daß der monokline Winkel entsprechender (monokliner) H-Ta₂O₅-Varianten von gleicher Größenordnung ist wie bei R-Nb₂O₅ (~91°). Zur Kenntnis näherer Einzelheiten ist eine Bestimmung der H-Ta₂O₅-Strukturen mit Hilfe von Einkristallen notwendig.

Anerkennung

Die Autoren danken der Deutschen Forschungsgemeinschaft für die Unterstützung dieser Arbeit.

† Holtzberg und Reisman (37) fanden den höheren Wert Ta: Nb = 0.3.

Literaturverzeichnis

- 1. R. GRUEHN, "Habilitationsschrift," Münster, 1968.
- 2. H. SCHÄFER, R. GRUEHN, F. SCHULTE UND W. MERTIN, Bull. Soc. Chim. France 1161 (1965).
- 3. R. GRUEHN, Mh. Chem. 96, 1789 (1965).
- 4. A. D. WADSLEY UND S. ANDERSSON, erscheint in "Perspectives in Structural Chemistry," Bd. 3.
- R. GRUEHN UND R. NORIN, Z. Anorg. Allgem. Chem. 367, 209 (1969).
- 6. R. GRUEHN, Naturwissenschaften 54, 645 (1967).
- H. SCHÄFER, R. GRUEHN UND F. SCHULTE, Angew. Chem. 78, 28 (1966).
- 8. F. LAVES UND W. PETTER, Helv. Phys. Acta 37, 617 (1964).
- 9. W. PETTER UND F. LAVES, Naturwissenschaften 52, 617 (1965).
- 10. R. GRUEHN, J. Less-Common Metals 11, 119 (1966).
- 11. F. SCHULTE, Dissertation, Münster, 1962.
- 12. W. MERTIN, Diplomarbeit, Münster, 1964.
- 13. S. ANDERSSON, Z. Anorg. Allgem. Chem. 351, 106 (1967).
- 14. W. MERTIN, S. ANDERSSON UND R. GRUEHN, J. Solid State Chem., 1, 419 (1970).
- R. S. ROTH, A. D. WADSLEY UND S. ANDERSSON, Acta Cryst. 18, 643 (1965).
- 16. J. L. WARING UND R. S. ROTH, Acta Cryst. 17, 455 (1963).
- 17. H. SCHÄFER, D. BERGNER UND R. GRUEHN, Z. Anorg. Allgem. Chem. 365, 31 (1969).
- 18. R. GRUEHN UND H. SCHÄFER, Naturwissenschaften 50, 642 (1963).
- 19. W. MERTIN, Dissertation, Münster, 1967.
- 20. R. GRUEHN, unveröffentlicht.
- 21. P. EHRLICH, Z. Elektrochem., Ber. Bunsenges. Physik. Chem. 45, 362 (1939).
- 22. G. BRAUER UND W. LITTKE, J. Inorg. Nucl. Chem. 16, 67 (1960).
- 23. S. ANDERSSON, B. COLLEN, U. KUYLENSTIERNA UND A. MAGNÉLI, Acta Chem. Scand. 11, 1641, 1653 (1957).
- 24. H. SCHÄFER, "Chemische Transportreaktionen," Weinheim 1962, New York, London, 1964.
- J. L. WARING UND R. S. ROTH, J. Res. Nat. Bur. Stand. 72A, 175 (1968).
- 26. W. RÜDORFF UND H. W. LUGINSLAND, Z. Anorg. Allgem. Chem. 334, 125 (1964).
- 27. H. MORAWIETZ, J. Inorg. Nucl. Chem. 28, 941 (1966).
- 28. D. R. KUDRAK UND M. J. SIENKO, Inorg. Chem. 6, 880 (1967).
- 29. J. GOLDSCHMIDT, Metallurgia 62, 211, 241 (1960).
- 30. H. W. BAUR, Naturwissenschaften 42, 295 (1955).
- 31. R. HAUL UND G. DÜMBGEN, J. Phys. Chem. Solids 26, 1 (1965).
- 32. S. ANDERSSON, Acta Chem. Scand. 14, 1161 (1960).
- 33. M. HOCH UND D. B. BUTRYMOVICZ, Trans. Met. Soc. AIME 230, 186 (1964).
- 34. A. D. WADSLEY, Acta Cryst. 14, 660, 664 (1961).
- 35. R. S. ROTH UND D. WADSLEY, Acta cryst. 18, 725 (1965).
- 36. A. REISMAN, F. HOLTZBERG, M. BERKENBLIT UND M. BERRY, J. Amer. Chem. Soc. 78, 4514 (1956).
- 37. F. HOLTZBERG UND A. REISMAN, J. phys. Chem. 65, 1192 (1961).
- 38. P. M. DE WOLFF, Acta Cryst. 10, 590 (1957).

- 39. S. LAGERGREN UND A. MAGNÉLI, Acta Chem. Scand. 6,444 (1952); ASTM Kartei Nr. 5-0258
- 40. A. I. ZASLAVSKIJ, R. A. ZVINCHUK UND A. G. TUTOV, Dokl. Akad. Nauk. SSSR 104, 409 (1955).
- 41. R. MOSER, Schweiz. Mineral. Petrog. Mitt. 45, 35 (1965).
- 42. M. LUNDBERG, J. Solid State Chem. 1, 463 (1970).
- 43. B. M. GATEHOUSE UND A. D. WADSLEY, Acta cryst. 17, 1545 (1964).
- 44. F. LAVES, R. MOSER UND W. PETTER, Naturwissenschaften 52, 617 (1965).